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Abstract— In this paper we show that observations in a
mixture can be modeled using a union of subspaces, and
hence mixture regression can be posed as a subspace clustering
problem. This allows to perform mixture regression even in the
presence of missing data. We illustrate this using a state-of-
the-art subspace clustering algorithm for incomplete data to
perform mixed linear regression on gene functional data. Our
approach outperforms existing methods on this task.

I. INTRODUCTION

One often wants to determine how a collection of variables
y ∈ Rq (e.g., glucose or cholesterol levels) depends on an
other collection of variables x ∈ Rp (e.g., diet, income,
or education), using a set of samples {xi,yi}

n
i=1. Linear

regression, or more generally a mixture of linear regressors
is arguably the most used model for this purpose. This model
assumes that the dependency is of the form

yi =

K

∑

k=1

1{ki=k}Bkxi + εi, (1)

where 1{⋅} denotes the indicator function, ki ∈ {1, . . . ,K}

is a hidden variable (e.g., blood type) indicating that the
ith example depends on the ki

th regressor Bki ∈ Rq×p, and
εi ∈ Rq represents noise. The goal is to estimate the ki’s
and the Bk’s from the training examples {xi,yi}

n
i=1. The

ki’s and the Bk’s determine the dependency that we aim to
find. Notice that if we knew the ki’s, then we could partition
the data accordingly, and estimate the Bk’s using standard
regression. The challenge is that we do not know the ki’s.

Linear mixtures are good models for practical applications
as diverse as health care, image processing and classification.
Hence there exists a wide variety of mixture regression meth-
ods. The most widely used algorithm is perhaps Expectation-
Maximization (EM) [1]. Unfortunately, not all datasets fol-
low the Gaussian assumption that it requires, and due to
the non-convexity of the method, it can only be guaranteed
to converge to a local minimum. Furthermore, new datasets
pose new challenges, like missing data. Hence developing
new and efficient mixture regression techniques is still an
active field of research [2]–[5].

On the other hand, subspace clustering is a powerful tool
to analyze high-dimensional data. One is given columns lying
in the union of several unknown low-dimensional subspaces,
and aims to infer the underlying subspaces and cluster the
columns according to the subspaces [6]. Subspace clustering
has applications in computer vision [7], network estimation
[8], [9] and recommender systems [10], [11], to name a
few. Hence it has attracted increasing attention in recent
years, producing theory and methods to handle outliers [12]–

[16], noisy measurements [17], privacy concerns [18], data
constraints [19], and missing data [20]–[25].

In this paper we show that observations following (1) lie
in a union of subspaces. Furthermore, we will see that if the
dataset at hand has low intrinsic dimension (as it is often the
case), then the underlying subspaces are low-dimensional.
In this case we can use subspace clustering algorithms to
perform mixture regression, even if data is highly incomplete.
In fact, our approach works in the difficult regime where each
sample has multiple responses (i.e., q > 1), many of which
may be unobserved, as well as many of the independent
variables. This is often known as multi-label transductive
learning with missing data [26].

We illustrate our approach on a real-life gene functional
dataset using two methods: first, a state-of-the-art subspace
clustering algorithm for incomplete data, group-sparse sub-
space clustering (GSSC) [25], and second, a state-of-the-art
method for multi-label transductive learning with missing
data, matrix completion with bias (MC-b) [26]. Our ap-
proach outperforms existing methods on this task, showing
the potential of subspace clustering algorithms on mixture
regression.

We point out that it has been previously noted that
mixture regression can be modeled using unions of subspaces
[5]. However, this observation has received little attention.
The reason is that the classical setup of regression deals
with the case where there is only one response per obser-
vation (i.e., yi ∈ R). As we will see in Section II, this
yields observations on p-dimensional subspaces in Rp+1,
i.e., subspaces whose dimension is only one less than the
ambient dimension (hyperplanes). Unfortunately, practical
approaches to subspace clustering have poor performance in
this setting. Furthermore, this leaves no room for missing
data, as one fundamental requirement for clustering of p-
dimensional subspaces is to observe at least p+1 entries per
column [24], which would imply observing all data.

Fortunately, in many modern applications, each observa-
tion has q > 1 responses (i.e., yi ∈ Rq), and the xi’s often
have additional structure. As we will see in Section III, this
yields observations lying near subspaces of dimension much
lower than the ambient dimension, q+p. This allows a large
portion of missing data, and there exist practical subspace
clustering algorithms that work well under these settings
[20]–[25].

Organization of the Paper

In Section II we show that observations in a mixture can be
modeled using a union of subspaces. In Section III we show



that if the xi’s have some additional structure, these sub-
spaces are low-dimensional, whence one can use subspace
clustering algorithms to perform mixture regression, even if
data is missing. In Section IV we present our experiments
on a real-life biological dataset. Section V includes a brief
description of the methods we used for our experiments.

II. MIXTURES LIE IN UNIONS OF SUBSPACES

In this section we show that observations in a mixture lie
near a union of subspaces. First observe that in the noiseless
setting, i.e., if εi = 0, (1) can be written as

yi = Bkixi. (2)

Define

zi ∶= [
yi
xi

] ∈ Rq+p. (3)

Letting Iq denote the identity matrix of size q × q, we can
rewrite (2) as

[−Iq Bki]zi = 0. (4)

Recall that Bki ∈ Rq×p. Let Zk be the matrix corresponding
to the kth regressor, i.e., the matrix formed with {zi ∶ ki = k}
as columns. It follows that Zk lies in ker[−Iq Bki], which is
a p-dimensional subspace in Rq+p (the q rows in [−Iq Bki]

are linearly independent because of the identity block).
Theoretically, one could use a subspace clustering algo-

rithm to determine the hidden labels ki’s. Once this is known,
we could partition the data accordingly, and learn the Bk’s
using standard regression. Alternatively, subspace clustering
algorithms typically yield the underlying subspaces, in this
case given by ker[−Iq Bk], whence the Bk’s can be learned
by simple inspection.

However, if q is small (for example, in classical mixture
settings q = 1), then the columns in Zk lie in a p-dimensional
subspace in Rp+1, i.e., a hyperplane, and practical subspace
clustering algorithms have poor performance in this setting.
Furthermore, since p + 1 observations per column are theo-
retically necessary for subspace clustering [24], this leaves
no room for missing data.

Fortunately, in many modern applications q is often large,
and the xi’s have additional structure. As we will see
in the next section, this results in observations lying on
low-dimensional subspaces. This allows a large portion of
missing data, and there exist practical subspace clustering
algorithms that work well under these settings [20]–[25].

III. MIXTURE REGRESSION AS SUBSPACE CLUSTERING

In many applications of regression, the vectors xi lie in
r-dimensional subspaces of Rp, r < p. In this section we
will show that if this is the case, then the zi’s (as defined in
(3)) also lie in subspaces of dimension r (as opposed to p),
whence subspace clustering (and hence mixture regression)
can be performed with even fewer observations (as little as
r + 1 instead of p + 1). In other words, if the vectors xi lie
near low-dimensional subspaces, one can perform mixture
regression with even fewer data.

To see this, let Xk denote the matrix containing the
columns corresponding to the kth regressor. More precisely,
let Xk be the matrix formed with {xi ∶ ki = k} as columns.
Suppose Xk is rank-r, with r < p. Let Wk ∈ Rp×r be a
basis of the r-dimensional subspace spanned by the columns
in Xk. We can assume without loss of generality that Wk

is in the following column-echelon form (otherwise we can
simply permute the rows of Xk):

Wk = [
W′

k

Ir
] . (5)

Let θi ∈ Rr be the coefficient vector of xi in the basis Wki ,
and let xυi ∈ Rp−r and xωi ∈ Rr be the vectors with the first
p − r and the last r entries of xi respectively, such that

xi = [
xυi

xωi

] = [
W′

ki
Ir

]θi.

From the bottom block we can see that θi = xωi , and from
the top block we can see that xυi = W′

kixωi . Equivalently,

[−Ip−r W′

ki]xi = 0.

Putting this together with (4), we obtain:

[
−Iq Bki

0 −Ip−r W′

ki

]zi = 0. (6)

Define Γki as the (q + p − r) × (q + p) matrix in the last
equation. It follows that zi lies in kerΓki , which is an r-
dimensional subspace in Rq+p (the q + p − r rows in Γki
are linearly independent because of the identity blocks). We
conclude that the columns in Zk lie in an r-dimensional
subspace of Rq+p.

The smaller r the better, because then data lies in lower
dimensional subspaces, which are smaller and easier to
estimate. Also, the smaller r, the more room for missing
data, because r+1 observations per column are information-
theoretically necessary and sufficient for r-dimensional sub-
space clustering [24].

IV. EXPERIMENTS

In this section we present an experiment to illustrate our
approach on a real-life application. To this end, we will use
the yeast dataset studied by Elisseeff and Weston [27]. This
dataset contains n = 2417 samples. Each sample consists
of a vector xi ∈ Rp containing p = 113 activation levels in
a gene, and a vector y′i ∈ {−1,1}q indicating whether such
gene belongs to each of q = 14 functional classes. The goal is
to predict each gene’s membership in the functional classes,
i.e., predict y′i. Since y′i ∈ {−1,1}q , we will model y′i as
sign(yi), with yi as in (1).

To further illustrate the potential of subspace clustering
techniques, we will complicate this task by adding missing
data. More precisely, let X ∈ Rp×n and Y′

∈ Rq×n be the
matrices formed with {xi}

n
i=1 and {y′i}

n
i=1 as columns. We

will only observe a fraction ω of the entries in X and Y′

(selected uniformly at random), perform mixture regression
using subspace clustering, and measure the percentage of
unobserved entries in Y′ that were predicted correctly.



Algorithm ω = 40% ω = 60% ω = 80%
GSSC+MC-b 14.3(0.2) 10.9(0.2) 7.4(0.4)
MC-b 16.1(0.3) 12.2(0.3) 8.7(0.4)
MC-1 16.7(0.3) 13.0(0.2) 8.5(0.4)
FPC+SVM 21.5(0.3) 20.8(0.3) 20.3(0.3)
EM1+SVM 22.0(0.2) 21.2(0.2) 20.4(0.2)
Mean+SVM 21.7(0.2) 21.1(0.2) 20.5(0.4)
Zero+SVM 21.6(0.2) 21.1(0.2) 20.5(0.4)

TABLE I: Percentage of incorrectly predicted entries in Y for
different percentages of observed entries in the yeast dataset
[27]. Mean (and standard deviation) over 10 trials. Our approach
(GSSC+MC-b) outperforms the state-of-the-art method MC-b.

As mentioned in Section I, if we knew the ki’s, we could
partition the data accordingly, and do standard regression
separately. This is essentially what we did. We first used
a state-of-the-art subspace clustering algorithm for missing
data, group-sparse subspace clustering (GSSC) [25] to re-
cover the ki’s. This partitioned the data into {Xk}

K
k=1 and

{Y′

k}
K
k=1. Then for each k, we ran matrix completion with

bias (MC-b) [26], a state-of-the-art method for multi-label
transductive learning with missing data, which essentially
performs standard regression on this type of data. See Section
V for more details about these methods.

Table 5 in [26] shows the mean (and standard devia-
tion) performance of several baselines from the literature
on this task and this dataset, over 10 independent trials
(where the randomness is in the observed entries) for dif-
ferent percentages ω of observed entries. The contesting
methods are combinations of completion methods and stan-
dard support vector machines (SVM): matrix completion
on X alone using FPC [10] (FPC+SVM), expectation-
maximization with k Gaussians to impute X (EM(k)+SVM),
mean-filling (Mean+SVM) and zero-filling (Zero+SVM). Ta-
ble I complements such table with our results, showing that
our approach (GSSC+MC-b) outperforms the state-of-the-art
method MC-b as well as all other methods in the comparison.

V. METHODS

In this section we briefly describe the two methods that we
used in Section IV to perform mixture regression using sub-
space clustering. The first method is group-sparse subspace
clustering (GSSC) [25], a state-of-the-art subspace clustering
algorithm for incomplete data, group-sparse subspace cluster-
ing (GSSC). The second method is matrix completion with
bias (MC-b) [26], a state-of-the-art method for multi-label
transductive learning with missing data, which essentially
performs standard regression on datasets with both, binary
and real valued data, like the yeast dataset [27] analyzed in
Section IV.

First let Z ∈ R(q+p)×n be the matrix formed by stacking
Y′

∈ {−1,1}q×n and X ∈ Rp×n. GSSC will assume that the
columns in Z lie in a union of subspaces, one subspace for
each regressor Bk in (1). By subspace clustering the columns
in Z, GSSC aims to recover the labels {ki}

n
i=1 indicating

which columns correspond to which regressors.

Fig. 1: Factorization aimed by the group-sparse subspace clustering
algorithm (GSSC).

The main idea behind GSSC is to find matrices U ∈

R(q+p)×Kr and V ∈ RKr×n such that UV equals Z in all
the observed entries. Essentially, U contains K blocks, each
of size (q + p) × r. The aim is that the kth block, Uk, gives
a basis of the kth subspace. Similarly, each column in V
contains K blocks. The aim is that the kth block in the ith

column, vki, is nonzero if and only if the ith column lies
in the kth subspace (see Figure 1 for some intuition). This
is pursued through alternating minimization of U and V,
and a group-sparsity penalty on V. GSSC is summarized
in Algorithm 1, where ∥ ⋅ ∥F denote the Frobenius norm, ⊙
denotes the Hadamard (element-wise) product, and Ω is the
(q + p) × n matrix indicating the observed entries in Z.

Notice that GSSC requires knowing in advance the number
of subspaces K and their dimensions r. Using 5-fold cross
validation we obtained K = 16 and r = 19. We also used 5-
fold cross validation to obtain λ = 10−3. We initialize GSSC
with the output of SSC-EWZF (sparse subspace clustering
by entry-wise zero fill) [23], which is very similar to the
well-known sparse subspace clustering algorithm (SSC) [28],
except that the coefficients of each column are obtained using
only its observed rows, filling all unobserved entries in these
rows of the remaining columns with zeros.

After running GSSC, the estimated labels {ki}
n
i=1 produce

a partition of the data into {Xk}
K
k=1 and {Y′

k}
K
k=1. Now for

each k we run matrix completion with bias (MC-b) [26],
a state-of-the-art method that essentially performs standard
regression on this type of data.

The main idea behind MC-b is to find the low-rank matrix
that best approximates the observed entries. This is pursued

Algorithm 1: Group-Sparse Subspace Clustering
(GSSC)
Input: ZΩ,K, r, parameter λ.

Initialize Û ∈ R(q+p)×Kr (e.g., using SSC-EWZF).
repeat

V̂ = argmin
V

∥Ω⊙ (Z − ÛV)∥
2
F + λ

K,n

∑

k=1,i=1

∥vki∥2.

Û = argmin
U ∶ ∥U∥F ≤1

∥Ω⊙ (Z −UV̂)∥F .

until convergence;
Output: Û, V̂.



Algorithm 2: Matrix Completion with bias (MC-b)

Input: ZΩk
, parameters λ,{µ`}L`=1, step-sizes τb, τZ.

Initialize Ẑk (e.g., as Ωk ⊙Zk) and b̂k (e.g., as 0).
for ` = 1,2, . . . , L do

repeat
Compute b̂k = b̂k − τb∇b.
Compute Ẑk = Ẑk − τZ∇Z.
Compute SVD of Ẑk = LDR.
Compute Ẑk = Lmax(D − τZµ`,0)R.

until convergence;

Output: Ẑk.

by minimizing

min
X̂k,Ŷk,b̂k

µ∥[
Ŷk

X̂k
]∥

∗

+

1

∥ΩXk
∥0

∑

(j,i)∈ΩXk

(xji − x̂ji)
2

+

λ

∥ΩYk
∥0

∑

(j,i)∈ΩYk

log (1 + e−y
′
ji(ŷji+b̂kj

)
) (7)

where ∥ ⋅ ∥∗ denotes the nuclear norm, given by the sum of
singular values, ∥ ⋅ ∥0 denotes the zero-norm, given by the
number of nonzero entries, and ΩXk

and ΩYk
indicate the

observed entries in Xk and Y′

k. The main intuition behind
(7) is that the first term will favor low-rank matrices, the
quadratic loss in the last term will penalize the error in the
real-valued observed entries in Xk, and the logistic loss in
the second term will penalize the error in the binary-valued
observed entries in Y′

k.
We follow the approach in [26] and use an adaptation of

the fixed point continuation (FPC) method in [29] to solve
(7). This method essentially consists of gradient steps in X̂k,
Ŷk and b̂k, followed by a shrinkage operator in Ẑk, the
matrix formed by stacking Ŷk and X̂k. MC-b is summarized
in Algorithm 2, where the gradient steps are given by

∇X =

1

∣ΩXk
∣

ΩXk
⊙ (Xk − X̂k),

∇Yji =

⎧
⎪⎪
⎨
⎪⎪
⎩

λ
∣ΩYk

∣

−y′ji

1+e
y′
ji
(ŷji+b̂j)

if (j, i) ∈ ΩYk

0 otherwise,

∇bkj =

λ

∥ΩYk
∥
∑

(j,i)∈ΩYk

−y′ji

1 + ey
′
ji(ŷji+b̂j)

,

∇Z = [
∇Y
∇X

] .

Following the settings in [26] for the yeast dataset [27]
studied in Section IV, we set {µ`}L`=1 starting with µ1 = d1η,
where d1 is the largest singular value of Zk ⊙ Ω and η =

1/4, and then decreasing according to the decay parameter η
until µL = 10−5. We also set τZ =min(3.8∥ΩYk

∥0/λ, ∥ΩXk
∥0)

and τb = 3.8∥ΩYk
∥0/λn, with λ = 1. We claimed convergence

whenever there was a change in the objective function (7)
smaller than 10−5.
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