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Abstract

Completing a data matrix X has become an ubiquitous problem in modern data
science, with motivations in recommender systems, computer vision, and networks
inference, to name a few. One typical assumption is that X is low-rank. A more
general model assumes that each column of X corresponds to one of several low-
rank matrices. This paper generalizes these models to what we call mixture matrix
completion (MMC): the case where each entry of X corresponds to one of several
low-rank matrices. MMC is a more accurate model for recommender systems, and
brings more flexibility to other completion and clustering problems. We make four
fundamental contributions about this new model. First, we show that MMC is theo-
retically possible (well-posed). Second, we give its precise information-theoretic
identifiability conditions. Third, we derive the sample complexity of MMC. Fi-
nally, we give a practical algorithm for MMC with performance comparable to the
state-of-the-art for simpler related problems, both on synthetic and real data.

1 Introduction

Matrix completion aims to estimate the missing entries of an incomplete data matrix X. One of
its main motivations arises in recommender systems, where each row represents an item, and each
column represents a user. We only observe an entry in X whenever a user rates an item, and the goal
is to predict unseen ratings in order to make good recommendations.

Related Work. In 2009, Candès and Recht [1] introduced low-rank matrix completion (LRMC),
arguably the most popular model for this task. LRMC assumes that each column (user) can be
represented as a linear combination of a few others, whence X is low-rank. Later in 2012, Eriksson
et. al. [2] introduced high-rank matrix completion (HRMC), also known as subspace clustering with
missing data. This more general model assumes that each column of X comes from one of several
low-rank matrices, thus allowing several types of users. Since their inceptions, both LRMC and
HRMC have attracted a tremendous amount of attention (see [1–27] for a very incomplete list).

Paper contributions. This paper introduces an even more general model: mixture matrix completion
(MMC), which assumes that each entry in X (rather than column) comes from one out of several
low-rank matrices, and the goal is to recover the matrices in the mixture. Figure 1 illustrates the
generalization from LRMC to HRMC and to MMC. One of the main motivations behind MMC is
that users often share the same account, and so each column in X may contain ratings from several
users. Nonetheless, as we show in Section 2, MMC is also a more accurate model for many other
contemporary applications, including networks inference, computer vision, and metagenomics. This
paper makes several fundamental contributions about MMC:

– Well posedness. First, we show that MMC is theoretically possible if we observe the right entries
and the mixture is generic (precise definitions below).
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Figure 1: In LRMC, X is a low-rank matrix. In HRMC, each column of X comes from one of several low-rank
matrices. In MMC, each entry comes from one of several low-rank matrices X1, . . . ,XK; we only observe XΩ,
and our goal is to recover the columns of X1, . . . ,XK that have observations in XΩ.

– Identifiability conditions. We provide precise information-theoretical conditions on the entries
that need to be observed such that a mixture of K low-rank matrices is identifiable. These extend
similar recent results of LRMC [3] and HRMC [4] to the setting of MMC. The subtlety in proving
these results is that there could exist false mixtures that agree with the observed entries, even if
the sampling is uniquely completable for LRMC and HRMC (see Example 1). In other words,
there exits samplings that are identifiable for LRMC (and HRMC) but are not identifiable for
MMC, and so in general it is not enough to simply have K times more samples. Hence, it was
necessary to derive identifiability conditions for MMC, similar to those of LRMC in [3] and
HRMC in [4]. We point out that in contrast to typical completion theory [1, 2, 5–20], these type
of identifiability conditions are deterministic (not restricted to uniform sampling), and make no
coherence assumptions.

– Sample complexity. If X ∈ Rd×n is a mixture of K rank-r matrices, we show that with high
probability, our identifiability conditions will be met if each entry is observed with probability
O(Kd max{r, log d}), thus deriving the sample complexity of MMC, which is the same as the
sample complexity of HRMC [4], and simplifies to O( 1d max{r, log d}) in the case of K = 1,
which corresponds to the sample complexity of LRMC [3]. Intuitively, this means that information-
theoretically, we virtually pay no price for mixing low-rank matrices.

– Practical algorithm. Our identifiability results follow from a combinatorial analysis that is
infeasible in practice. To address this, we give a practical alternating algorithm for MMC whose
performance (in the more difficult problem of MMC) is comparable to state-of-the-art algorithms
for the much simpler problems of HRMC and LRMC.

2 Motivating Applications

Besides recommender systems, there are many important applications where data can be modeled as a
mixture of low-rank matrices. Here are a few examples motivated by current data science challenges.

Networks Inference. Estimating the topology of a network (internet, sensor networks, biological
networks, social networks) has been the subject of a large body of research in recent years [28–34].
To this end, companies routinely collect distances between nodes (e.g., computers) that connect with
monitors (e.g., Google, Amazon, Facebook) in a data matrix X. In a simplified model, if node j
is in subnet k, then the jth column can be modeled as the sum of (i) the distance between node j
and router k, and (ii) the distance between router k and each of the monitors. Hence, the columns
(nodes) corresponding to each subnet form a low-rank matrix, which is precisely the model assumed
by HRMC. However, depending on the network’s traffic, each node may use different routes to
communicate at different times. Consequently, the same column in X may contain measurements
from different low-rank matrices. In other words, distance matrices of networks are a mixture of
low-rank matrices.

Computer Vision. Background segmentation is one of the most fundamental and crucial tasks in
computer vision, yet it can be tremendously challenging. The vectorized frames of a video can
be modeled as columns with some entries (pixels) in a low-rank background, and some outlier
entries, corresponding to the foreground. Typical methods, like the acclaimed Robust PCA (principal
component analysis) [35–46], assume that the foreground is sparse and has no particular structure.
However, in many situations this is not the case. For instance, since the location of an object in
consecutive frames is highly correlated, the foreground can be highly structured. Similarly, the
foreground may not be sparse, specially if there are foreground objects moving close to the camera
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(e.g., in a selfie). Even state-of-the-art methods fail in scenarios like these, which are not covered
by current models (see Figure 3 for an example). In contrast, MMC allows to use one matrix in the
mixture to represent the background, other matrices to represent foreground objects (small or large,
even dominant), and even other matrices to account for occlusions and other illumination/visual
artifacts. Hence, MMC can be a more accurate model for video segmentation and other image
processing tasks, including inpainting [47] and face clustering, which we explore in our experiments.

Metagenomics. One contemporary challenge in Biology is to quantify the presence of different
types of bacteria in a system (e.g., the human gut microbiome) [48–52]. The main idea is to collect
several DNA samples from such a system, and use their genomic information to count the number of
bacteria of each type (the genome of each bacterium determines its type). In practice, to obtain an
organism’s genome (e.g., a person’s genome), biologists feed a DNA sample (e.g., blood or hair) to a
sequencer machine that produces a series of reads, which are short genomic sequences that can later
be assembled and aligned to recover the entire genome. The challenge arises when the sequencer is
provided a sample with DNA from multiple organisms, as is the case in the human gut microbiome,
where any sample will contain a mixture of DNA from multiple bacteria that cannot be disentangled
into individual bacterium. In this case, each read produced by the sequencer may correspond to a
different type of bacteria. Consequently, each DNA sample (column) may contain genes (rows) from
different types of bacteria, which is precisely the model that MMC describes.

3 Problem Statement

Let X1, . . . ,XK ∈ Rd×n be a set of rank-r matrices, and let Ω1, . . . ,Ωk ∈ {0, 1}d×n indicate
disjoint sets of observed entries. Suppose X1, . . . ,XK and Ω1, . . . ,ΩK are unknown, and we only
observe XΩ, defined as follows:

– If the (i, j)th entry of Ωk is 1, then the (i, j)th entry of XΩ is equal to the (i, j)th entry of Xk.

– If the (i, j)th entry of Ωk is 0 for every k = 1, . . . ,K, then the (i, j)th entry of XΩ is missing.

This way Ωk indicates the entries of XΩ that correspond to Xk, and Ω :=
∑K

k=1 Ωk indicates the set
of all observed entries. Since Ω1, . . . ,ΩK are disjoint, Ω ∈ {0, 1}d×n. Equivalently, each observed
entry of XΩ corresponds to an entry in either X1 or X2 or . . . or XK (i.e., there are no collisions).
In words, XΩ contains a mixture of entries from several low-rank matrices.

The goal of MMC is to recover all the columns of X1, . . . ,XK that have observations in XΩ (see
Figure 1 to build some intuition). In our recommendations example, a column xω ∈ XΩ will contain
entries from Xk whenever xω contains ratings from a user of the kth type. Similarly, the same
column will contain entries from X` whenever it also contains ratings from a user of the `th type. We
would like to predict the preferences of both users, or more generally, all users that have ratings in
xω . On the other hand, if xω has no entries from Xk, then xω involves no users of the kth type, and
so it would be impossible (and futile) to try to recover such column of Xk. In MMC, the matrices
Ω1, . . . ,ΩK play the role of the hidden variables constantly present in mixture problems. Notice that
if we knew Ω1, . . . ,ΩK, then we could partition XΩ accordingly, and estimate X1, . . . ,XK using
standard LRMC. The challenge is that we do not know Ω1, . . . ,ΩK.

3.1 The Subtleties of MMC

The main theoretical difficulty of MMC is that depending on the pattern of missing data, there could
exist false mixtures. That is, matrices X̃1, . . . , X̃K, other than X1, . . . ,XK, that agree with XΩ,
even if X1, . . . ,XK are observed on uniquely completable patterns for LRMC.

Example 1. Consider the next rank-1 matrices X1,X2, and their partially observed mixture XΩ:

X1 =


1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

 , X2 =


1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16
5 10 15 20

 , XΩ =


1 · 3 4
1 2 · 8
3 2 3 ·
4 8 3 4
· 10 15 4

 .
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We can verify that X1 and X2 are observed on uniquely completable sampling patterns for LRMC
[3]. Nonetheless, we can construct the following false rank-1 matrices that agree with XΩ:

X̃1 =


60 40 15 4
1 2/3 1/4 1/15
3 2 3/4 1/5
12 8 3 4/5
60 40 15 4

 , X̃2 =


1 1/4 3 1
8 2 24 8
1 1/4 3 1
4 1 12 4
40 10 120 40

 .
This shows that even with unlimited computational power, if we exhaustively search all the identifiable
patterns for LRMC, we can end up with false mixtures. Hence the importance of studying the
identifiable patterns for MMC.

False mixtures arise because we do not know a priori which entries of XΩ correspond to each Xk.
Hence, it is possible that a rank-r matrix X̃ agrees with some entries from X1, other entries from X2,
and so on. Furthermore, X̃ may even be the only rank-r matrix that agrees with such combination of
entries, as in Example 1.
Remark 1. Recall that LRMC and HRMC are tantamount to identifying the subspace(s) containing
the columns of X [3, 4]. In fact, if we knew such subspaces, LRMC and HRMC become almost trivial
problems (see Appendix A for details). Similarly, if no data is missing, HRMC simplifies to subspace
clustering, which has been studied extensively, and is now reasonably well-understood [53–62]. In
contrast, MMC remains challenging even if the subspaces corresponding to the low-rank matrices
in the mixture are known, and even X is fully observed. We refer the curious reader to Appendix A,
and point out the bottom row and the last column in Figure 2, which show the MMC error when the
underlying subspaces are known, and when X is fully observed.

4 Main Theoretical Results

Example 1 shows the importance of studying the identifiable patterns for MMC, which we do now.
First recall that r + 1 samples per column are necessary for LRMC [3]. This implies that even if an
oracle told us Ω1, . . . ,ΩK, if we intend to recover a column of Xk, we need to observe it on at least
r + 1 entries. Hence we assume without loss of generality that:

(A1) Each column of Ωk has either 0 or r + 1 non-zero entries.

In words, A1 requires that each column of Xk to be recovered is observed on exactly r + 1 entries.
Of course, observing more entries may only aid completion. Hence, rather than an assumption,
A1 describes the most difficult scenario where we have the bare minimum amount of information
required for completion. We use A1 to ease notation, exposition and analysis. All our results can be
easily extended to the case where A1 is droped (see Remark 2).

Without further assumptions on X, completion (of any kind) may be impossible. To see this consider
the simple example where X is only supported on the ith row. Then it would be impossible to recover
X unless all columns were observed on the ith row. In most completion applications this would be
unlikely. For example, in a movies recommender system like Netflix, this would require that all the
users watched (and rated) the same movie.

To rule out scenarios like these, typical completion theory requires incoherence and uniform sampling.
Incoherence guarantees that the information is well-spread over the matrix. Uniform sampling
guarantees that all rows and columns are sufficiently sampled. However, it is usually unclear (and
generally unverifiable) whether an incomplete matrix is coherent. Furthermore, observations are
hardly ever uniformly distributed. For instance, we do not expect children to watch adults movies.

To avoid these issues, instead of incoherence we will assume that X is a generic mixture of low-rank
matrices. More precisely, we assume that:

(A2) X1, . . . ,XK are drawn independently according to an absolutely continuous distribution
with respect to the Lebesgue measure on the determinantal variety (set of all d × n,
rank-r matrices).
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A2 essentially requires that each Xk is a generic rank-r matrix. This type of genericity assumptions
are becoming increasingly common in studies of LRMC, HRMC, and related problems [3, 4, 23–
27, 46]. See Appendix C for a further discussion on A2, and its relation to other common assumptions
from the literature.

With this, we are ready to present our main theorem. It gives a deterministic condition on Ω
to guarantee that X1, . . . ,XK can be identified from XΩ. This provides information-theoretic
requirements for MMC. The proof is in Appendix B.

Theorem 1. Let A1-A2 hold. Suppose there exist matrices {Ωτ}r+1
τ=1 formed with disjoint

subsets of (d− r + 1) columns of Ωk, such that for every τ :

(†) Every matrix Ω′ formed with a proper subset of the columns in Ωτ has at least r fewer
columns than non-zero rows.

Then all the columns of Xk that have observations in XΩ are identifiable.

In words, Theorem 1 states that MMC is possible as long as we observe the right entries in each Xk.
The intuition is that each of these entries imposes a constraint on what X1, . . . ,XK may be, and the
pattern in Ω determines whether these constraints are redundant. Patterns satisfying the conditions of
Theorem 1 guarantee that X1, . . . ,XK is the only mixture that satisfies the constraints produced by
the observed entries.
Remark 2. Recall that r + 1 samples per column are strictly necessary for completion. A1 requires
that we have exactly that minimum number of samples. If Xk is observed on more than r + 1 entries
per column, it suffices that Ωk contains a pattern satisfying the conditions of Theorem 1.

Theorem 1 shows that MMC is possible if the samplings satisfy certain combinatorial conditions. Our
next result shows that if each entry of Xk is observed on XΩ with probability O( 1d max{r, log d}),
then with high probability Ωk will satisfy such conditions. The proof is in Appendix B.

Theorem 2. Suppose r ≤ d
6 and n ≥ (r + 1)(d− r + 1). Let ε > 0 be given. Suppose that an

entry of XΩ is equal to the corresponding entry of Xk with probability

p ≥ 2
d max

{
2r, 12

(
log(dε ) + 1

)}
.

Then Ωk satisfies the sampling conditions of Theorem 1 with probability ≥ 1− 2(r + 1)ε.

Theorem 2 shows that the sample complexity of MMC is O(Kmax{r, log d}) observations per
column of XΩ. This is exactly the same as the sample complexity of HRMC [4], and simplifies to
O(max{r, log d}) if K = 1, corresponding to the sample complexity of LRMC [3]. Intuitively, this
means that information-theoretically, we virtually pay no price for mixing low-rank matrices.

5 Alternating Algorithm for MMC

Theorems 1 and 2 show that MMC is theoretically possible under reasonable conditions (virtually
the same as LRMC and HRMC). However, these results follow from a combinatorial analysis that is
infeasible in practice (see Appendix B for details). To address this, we derive a practical alternating
algorithm for MMC, which we call AMMC (alternating mixture matrix completion).

The main idea is that MMC, like most mixture problems, can be viewed as a clustering task: if we
could determine the entries of XΩ that correspond to each Xk, then we would be able to partition XΩ

into K incomplete low-rank matrices, and then complete them using standard LRMC. The question is
how to determine which entries of XΩ correspond to each Xk, i.e., how to determine Ω1, . . . ,ΩK.
To address this, let Uk ∈ Rd×r be a basis for the subspace containing the columns of Xk, and let
xω denote the jth column of XΩ, observed only on the entries indexed by ω ⊂ {1, . . . ,d}. For any
subspace, matrix or vector that is compatible with a set of indices ·, we use the subscript · to denote
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its restriction to the coordinates/rows in ·. For example, Uk
ω ∈ R|ω|×r denotes the restriction of Uk

to the indices in ω. Suppose xω contains entries from Xk, and let ωk ⊂ ω index such entries. Then
our goal is to determine ωk, as that would tell us the jth column of Ωk. Since xωk ∈ span{Uk

ωk},
we can restate our goal as finding the set ωk ⊂ ω such that xωk ∈ span{Uk

ωk}.

To find ωk, let υ ⊂ ω, and let Pk
υ := Uk

υ(U
kT
υ Uk

υ)
−1UkT

υ denote the projection operator onto
span{Uk

υ}. Recall that ‖Pk
υxυ‖ ≤ ‖xυ‖, with equality if and only if xυ ∈ span{Uk

υ}. It follows
that ωk is the largest set υ such that ‖Pk

υxυ‖ = ‖xυ‖. In other words, ωk is the solution to

argmax
υ⊂ω

‖Pk
υxυ‖ − ‖xυ‖ + |υ|. (1)

However, (1) is non-convex. Hence, in order to find the solution to (1), we propose the following
erasure strategy. The main idea is to start our search with υ = ω, and then iteratively remove the
entries (coordinates) of υ that most increase the gap between ‖Pk

υxυ‖ and ‖xυ‖ (hence the term
erasure). We stop this procedure when ‖Pk

υxυ‖ is equal to ‖xυ‖ (or close enough). More precisely,
we initialize υ = ω, and then iteratively redefine υ as the set

υ = υ\i, where i = argmax
i∈υ

‖Pk
υ\ixυ\i‖ − ‖xυ\i‖. (2)

In words, i is the coordinate of the vector xυ such that if ignored, the gap between the remaining
vector xυ\i and its projection Pk

υ\ixυ\i is reduced the most. At each iteration we remove (erase)
such coordinate i from υ. The intuition behind this approach is that the coordinates of xυ that
do not correspond to Xk are more likely to increase the gap between ‖Pk

υxυ‖ and ‖xυ‖. Notice
that if Uk is in general position (guaranteed by A2) and |υ| ≤ r, then Uk

υ = R|υ| (because Uk is
r-dimensional). In such case, it is trivially true that xυ ∈ span{Uk

υ}, whence ‖Pk
υxυ‖ = ‖xυ‖.

Hence the procedure above is guaranteed to terminate after at most ‖ω‖ − r iterations. At such point,
|υ| = r, and we know that we were unable to find ωk (or a subset of it). One alternative is to start
with a different υ0 ( ω, and search again.

This procedure may remove some entries from ωk along the way, so in general, the output of this
process will be a set υ ⊂ ωk. However, finding a subset of ωk is enough to find ωk. To see this,
recall that since xωk ∈ span{Uk

ωk}, there is a coefficient vector θk ∈ Rr such that xωk = Uk
ωkθ

k.
Since υ ⊂ ωk, it follows that xυ = Uk

υθ
k. Furthermore, since |υ| ≥ r, we can find θk as

θk = (UkT
υ Uk

υ)
−1UkT

υ xυ. Since xωk = Uk
ωkθ

k, at this point we can identify ωk by simple
inspection (the matching entries in xω and Uk

ωθ
k). Recall that ωk determines the jth column of

Ωk. Hence, if we repeat the procedure above for each column in XΩ and each k, we can recover
Ω1, . . . ,ΩK. After this, we can use standard LRMC on XΩ1 , . . . ,XΩK to recover X1, . . .XK

(which is the ultimate goal of MMC).

The catch here is that this procedure requires knowing Uk, which we do not know. So essentially we
have a chicken and egg problem: (i) if we knew Uk, we would be able to find Ωk. (ii) If we knew
Ωk we would be able to find Uk (and Xk, using standard LRMC on XΩk). Since we know neither,
we use a common technique for these kind of problems: alternate between finding Ωk and Uk. More
precisely, we start with some initial guesses Û1, . . . , ÛK, and then alternate between the following
two steps until convergence:

(i) Cluster. Let xω be the jth column in XΩ. For each k = 1, . . . ,K, we first erase entries
from ω to obtain a set υ ⊂ ω indicating entries likely to correspond to Xk. This erasure
procedure initializes υ = ω, and then repeats (2), (replacing Pk with P̂k, which denotes the
projection operator onto span{Ûk}) until we to obtain a set υ ⊂ ω such that the projection
‖P̂k

υxυ‖ is close to ‖xυ‖. This way, the entries of xυ are likely to correspond to Xk. Using
these entries, we can estimate the coefficient of the jth column of Xk with respect to Uk,
given by θ̂k = (ÛkT

υkÛ
k
υk)
−1ÛkT

υkxυk . With θ̂k we can also estimate the jth column of Xk as
x̂k := Ûkθ̂k. Notice that both υ and x̂k are obtained using Ûk, which may be different from
Uk. It follows that υ may contain some entries that do not correspond to Xk, and x̂k may be
inaccurate. Hence, in general, xω and x̂k

ω will have no matching entries, and so we cannot
identify ωk by simple inspection, as before. However, we can repeat our procedure for each k
to obtain estimates x̂1

ω, . . . , x̂
K
ω , and then assign each entry of xω to its closest match. More
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Figure 2: Left: Success rate (average over 100 trials) of AMMC as a function of the fraction of observed entries
p and the distance δ between the true subspaces Uk and their initial estimates. Lightest represents 100% success
rate; darkest represents 0%. Right: Comparison of state-of-the-art algorithms for LRMC, HRMC, and MMC
(in their respective settings; see Figure 1). The performance of AMMC (in the more difficult problem of MMC)
is comparable to the performance of state-of-the-art algorithms in the simpler problems of LRMC and HRMC.

precisely, our estimate ω̂k ⊂ ω (indicating the entries of xω that we estimate that correspond
to Xk) will contain entry i ∈ ω if |xi − x̂ki | ≤ |xi − x̂`i | for every ` = 1, . . . ,K. Repeating
this procedure for each column of XΩ will produce estimates Ω̂1, . . . , Ω̂K. Specifically, the jth

column of Ω̂k ∈ {0, 1}d×n will contain a 1 in the rows indicated by ω̂k.

(ii) Complete. For each k, complete XΩ̂k using your favorite LRMC algorithm. Then compute a
new estimate Ûk given by the leading r left singular vectors of the completion of XΩ̂k .

The entire procedure is summarized in Algorithm 1, in Appendix D, where we also discuss initializa-
tion, generalizations to noise and outliers, and other simple extensions to improve performance.

6 Experiments

Simulations. We first present a series of synthetic experiments to study the performance of AMMC
(Algorithm 1). In our simulations we first generate matrices Uk ∈ Rd×r and Θk ∈ Rr×n with
i.i.d. N(0, 1) entries to use as bases and coefficients of the low-rank matrices in the mixture, i.e.,
Xk = UkΘk ∈ Rd×n. Here d = n = 100, r = 5 and K = 2. With probability (1− p), the (i, j)th

entry of XΩ will be missing, and with probability p/K it will be equal to the corresponding entry in Xk.
Recall that similar to EM and other alternating approaches, AMMC depends on initialization. Hence,
we study the performance of AMMC as a function of both p and the distance δ ∈ [0, 1] between {Uk}
and their initial estimates (measured as the normalized Frobenius norm of the difference between their
projection operators). We measure accuracy using the normalized Frobenius norm of the difference
between each Xk and its completion. We considered a success if this quantity was below 10−8. The
results of 100 trials are summarized in Figure 2.

Notice that the performance of AMMC decays nicely with the distance δ between the true subspaces
Uk and their initial estimates. We can see this type of behavior in similar state-of-the-art alternating
algorithms for the simpler problem of HRMC [19]. Since MMC is highly non-convex, it is not
surprising that if the initial estimates are poor (far from the truth), then AMMC may converge to a
local minimum. Similarly, the performance of AMMC decays nicely with the fraction of observed
entries p. Notice that even if X is fully observed (p = 1), if the initial estimates are very far from the
true subspaces (δ = 1), then AMMC performs poorly. This shows, consistent with our discussing
in Remark 1, that in practice MMC is a challenging problem even if X is fully observed. Hence,
it is quite remarkable that AMMC works most of the time with as little as p ≈ 0.6, corresponding
to observing ≈ 0.3 of the entries in each Xk. To put this under perspective, notice (Figure 2) that
this is comparable the amount of missing data tolerated by GSSC [19] and LMaFit [11], which are
state-of-the-art for the simpler problems of HRMC (special case of MMC where all entries in each
column of X correspond to the same Xk) and LRMC (special case where there is only one Xk).
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Mixture —— Reconstructions —— Original Robust PCA MMC (this paper)

Figure 3: Left 3: Reconstructed images from a mixture. Right 3: Original frame and segmented foreground.

To obtain Figure 2 we replicated the same setup as above, but with data generated according to
the HRMC and LRMC models. Hence, we conclude that the performance of AMMC (in the more
difficult problem of MMC) is comparable to the performance of state-of-the-art algorithms for the
much simpler problems of HRMC and LRMC.

We point out that according to Theorems 1 and 2, MMC is theoretically possible with p ≥ 1/2.
However, we can see that (even if U1, . . . ,UK are known, corresponding to δ = 0 in Figure 2) the
performance of AMMC is quite poor if p < 0.6. This shows two things: (i) MMC is challenging
even if U1, . . . ,UK are known (as discussed in Remark 1), and (ii) there is a gap between what is
information-theoretically possible and what is currently possible in practice (with AMMC). In future
work we will explore algorithms that can approach the information-theoretic limits.

Real Data: Face Clustering and Inpainting. It is well-known that images of an individual’s face are
approximately low-rank [63]. Natural images, however, usually contain faces of multiple individuals,
often partially occluding each other, resulting in a mixture of low-rank matrices. In this experiment
we demonstrate the power of MMC in two tasks: first, classifying partially occluded faces in an image,
and second, image inpainting [47]. To this end, we use the Yale B dataset [64], containing 2432
photos of 38 subjects (64 photos per subject), each photo of size 48× 42. We randomly select two
subjects, and vectorize and concatenate their images to obtain two approximately rank-10 matrices
X1,X2 ∈ R2016×64. Next we combine them into X ∈ R2016×64, whose each entry is equal to the
corresponding entry in X1 or X2 with equal probability. This way, each column of X contains a
mixed image with pixels from multiple individuals. We aim at two goals: (i) classify the entries in X
according to X1 and X2, which in turn means locating and classifying the face of each individual
in each image, and (ii) recover X1 and X2 from X, thus reconstructing the unobserved pixels in
each image (inpainting). We repeat this experiment 30 times using AMMC (with gaussian random
initialization, known to produce near-orthogonal subspaces with high probability), obtaining a pixel
classification error of 2.98%, and a reconstruction error of 4.1%, which is remarkable in light that the
ideal rank-10 approximation (no mixture, and full data) achieves 1.8%. Figure 3 shows an example,
with more in Figure 4 in Appendix E. Notice that in this case we cannot compare against other
methods, as AMMC is the first, and currently the only method for MMC.

Real Data: MMC for Background Segmentation. As discussed in Section 2, Robust PCA models
a video as the superposition of a low-rank background plus a sparse foreground with no structure.
MMC brings more flexibility, allowing multiple low-rank matrices to model background, structured
foreground objects (sparse or abundant) and illumination artifacts, while at the same time also
accounting for outliers (the entries/pixels that were assigned to no matrix in the mixture). In fact,
contrary to Robust PCA, MMC allows a very large (even dominant) fraction of outliers. In this
experiment we test AMMC in the task of background segmentation, using the Wallflower [65] and
the I2R [66] datasets, containing videos of traffic cameras, lobbies, and pedestrians in the street. For
each video, we compare AMMC (with gaussian random initialization) against the best result amongst
the following state-of-the-art algorithms for Robust PCA: [35–39]. We chose these methods based
on the comprehensive review in [40], and previous reports [41–43] indicating that these algorithms
typically performed as well or better than several others, including [44, 45]. In most cases, both
Robust PCA and AMMC perform quite similarly (see Figure 5 in Appendix E). However, in one
case AMMC achieves 87.67% segmentation accuracy (compared with the ground truth, manually
segmented), while Robust PCA only achieves 74.88% (Figure 3). Our hypothesis is that this is due to
the large portion of outliers (foreground). It is out of the scope of this paper, but of interest for future
work, to collect real datasets with similar properties, where AMMC can be further tested. We point
out, however, that AMMC is orders of magnitude slower than Robust PCA. Our future work will also
focus on developing faster methods for MMC.
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A MMC with Known Subspaces and Full Data

Remark 1 points out that if we knew the subspace(s) containing the columns in X, then LRMC and
HRMC become almost trivial problems, while MMC still remains challenging. To see this, recall
that by definition, the columns in a rank-r matrix lie in an r-dimensional subspace. Recall that xω
denotes the jth column of XΩ, observed only on the entries indexed by ω ⊂ {1, . . . ,d}, and that
Uk ∈ Rd×r spans the subspace containing the columns of Xk.

Next suppose that all the entries in xω correspond to the same subspace (as would be the case in
HRMC and LRMC), and that we know U1, . . . ,UK. Then we can project xω onto the subspaces
generated by U1

ω, . . . ,U
K
ω to determine which subspace xω corresponds to. Say it is Uk. Then we

can compute the coefficient of xω as θ = (UkT
ω Uk

ω)
−1UkT

ω xω. Since the coefficient of x is the
same as the coefficient of xω , we can recover x = Ukθ.

In contrast, in MMC the entries in xω may belong to multiple subspaces, and hence, even if we know
U1, . . . ,UK, we cannot just project to identify the subspace corresponding to xω (if xω has entries
from more than one subspace, it will not lie in any of the K subspaces). Hence, MMC can be very
challenging even if we know U1, . . . ,UK. This can be seen in our experiments. In particular pay
attention to the bottom row in Figure 2, which shows the MMC error when U1, . . . ,UK are known.

Similarly, MMC is difficult even if X is fully observed! To build some intuition, consider HRMC.
If no data is missing, HRMC simplifies to subspace clustering (SC) [53], which has been studied
extensively in recent years to produce theory and algorithms to handle gross errors [54–58], noise
[59], privacy [60] and data constraints [61]. Furthermore, the renowned state-of-the-art algorithm
sparse subspace clustering [62], can efficiently, accurately and provably perform SC. Hence, if X is
fully observed, HRMC is well understood.

In contrast, even if X is fully observed, MMC remains MMC, because we still do not know which
entries belong together, and because for each entry in X that we observe, there are K − 1 that we
do not. For example, if we observe an entry of X corresponding to X1, we still do not know that it
belongs to X1, and we still need to recover the corresponding entries of X2, . . . ,XK. Furthermore,
as we discussed above, and in Section 5, even if U1, . . . ,UK were known, identifying the entries
that agree with the subspace is not a trivial problem. Hence, MMC remains a challenging problem
even with full data. This can be seen in our experiments. In particular pay attention to the last column
in Figure 2, which shows the MMC error when X is fully observed.

B Proofs

As discussed in Section 3, the main subtlety in MMC is that since we do not know a priori which
entries of XΩ correspond to each Xk, there could arise false mixtures that agree with XΩ. Fortunately,
Theorem 3 in [4] gives conditions to guarantee that a subset of entries correspond to the same Xk.
We restate this result as the following Lemma, with some adaptations to our context.

Lemma 1 (Theorem 3 in [4]). Let A2 hold. Let X′,Xτ be matrices formed with disjoint subsets of
the columns in X. Let Ω′,Ωτ indicate subsets of the observed entries in X′ and Xτ with at least
r + 1 samples per column. Suppose there are only finitely many rank-r matrices that agree with X′Ω′ ,
and that Ωτ ∈ {0, 1}d×(d−r+1) satisfies condition (†) in Theorem 1. If there is a rank-r matrix that
agrees with [X′Ω′ Xτ

Ωτ
], then such matrix is unique, and all entries in [X′Ω′ Xτ

Ωτ
] correspond to the

same Xk.

The main insight behind Lemma 1 is that the observed entries in X′Ω′ impose restrictions on the rank-r
matrices that may agree with the observations. The restrictions produced by X′Ω′ may be enough
to narrow the possible solutions to a finite number of options. However, some of these restrictions
may come from X1, others from X2, and so on. In such case, it is possible that the combined
restrictions are compatible, leading to false rank-r matrices that agree with X′Ω′ . Incorporating
Xτ

Ωτ
adds more restrictions. The sampling pattern in Ωτ guarantees that the new restrictions will

add enough redundancy, such that if the restrictions do not come from the same Xk, they will be
inconsistent, implying that no rank-r matrix can possibly agree with [X′Ω′ Xτ

Ωτ
]. Intuitively, Xτ

Ωτ

works as a checksum matrix.
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Lemma 1 requires that X′Ω′ is finitely completable. Theorem 1 and Lemma 1 in [3] give conditions
on Ω′ to guarantee that this is the case. We combine these results in the following Lemma, with some
adaptations to our context.
Lemma 2 (Theorem 1 and Lemma 1 in [3]). Let A2 hold. Suppose Ω′ can be partitioned into r
matrices {Ωτ}τ=1

r, each of size d × (d − r + 1), such that condition (†) in Theorem 1 holds for
every τ . Then there are at most finitely many rank-r matrices that agree with X′Ω′ .

To summarize: Lemma 2 gives us conditions to guarantee that there are only finitely many rank-r
matrices that agree with a subset of entries. If these conditions are met, Lemma 1 provides further
conditions to guarantee that there is only one such rank-r matrix, and that all observations come from
the same Xk. Theorem 1 simply requires that each Ωk satisfies the conditions of Lemmas 1 and
2. This way, we can just exhaustively search for all combinations of samplings that satisfy these
conditions, knowing by assumption that we will eventually find Ω1, . . . ,ΩK. Then Lemmas 1 and
2 guarantee that we will be able to recover X1, . . . ,XK, and that we will find nothing else, i.e., no
false mixtures.

Proof of Theorem 1. We will exhaustively search all combinations of samplings Ω̃ with (r+ 1)(d−
r + 1) columns of Ω and r + 1 non-zero entries per column. For each such Ω̃ we will verify whether
it can be partitioned into matrices {Ωτ}τ=1

r+1 satisfying (†). If so, we will verify whether there is a
rank-r matrix that agrees with X̃Ω̃. In this case, Lemma 2 implies that X̃Ω̃ is finitely completable
(because {Ωτ}τ=1

r satisfy (†)). Furthermore, since Ωr+1 also satisfies (†), Lemma 1 implies that
X̃Ω̃ is uniquely completable, and that all its entries correspond to the same Xk. It follows that Xk is
the only rank-r matrix that agrees with X̃Ω̃.

By assumption, each Ωk can be partitioned into matrices {Ωτ}τ=1
r+1 satisfying (†). Hence the

output of the procedure above will partition XΩ into XΩ1 , . . . ,XΩK . By A1 each column in XΩk

has either 0 or r + 1 observations, so by Lemmas 1 and 2 we can recover all columns of Xk that have
observations in XΩ using LRMC techniques [3].

We now proceed to prove Theorem 2, which states that if an entry of Xk is observed with probability
p = O( 1d max{r, log d}), then with high probability Ωk will satisfy the combinatorial conditions
of Theorem 1, guaranteeing that Xk is identifiable. To this end, we will use the following lemma,
stating that if Xk is observed on enough entries per column, then it will satisfy the combinatorial
conditions of Theorem 2.
Lemma 3. Suppose r ≤ d

6 . Let ε > 0 be given. Suppose that Xk has at least (r + 1)(d − r + 1)
columns, each observed on at least m locations, distributed uniformly at random, and independently
across columns, with

m ≥ max
{
2r, 12

(
log(dε ) + 1

)}
. (3)

Then with probability at least 1− (r + 1)ε, Ωk satisfies the sampling conditions of Theorem 1.

Fortunately, we can prove Lemma 3 using Lemma 9 in [3], which we restate here with some
adaptations as follows.
Lemma 4. [Lemma 9 in [3]] Let the sampling assumptions of Lemma 3 hold. Let Ωτ−j be a matrix
formed with d− r columns of Ωk. Then with probability at least 1− ε

d , every matrix Ω′ formed with
a subset of the columns in Ωτ−j (including Ωτ−j) has at least r fewer columns than non-zero rows.

With Lemma 4, the proof of Lemma 3 follows by two union bounds.

Proof of Lemma 3. Randomly select r + 1 disjoint matrices {Ωτ}r+1
τ=1 from Ωk, each with d− r + 1

columns. Let Ωτ−j denote the matrix formed with all but the jth column of Ωτ . Using a union bound
and Lemma 4, we can bound the probability that Ωτ fails to satisfy condition (†) by

∑d−r+1
j=1

ε
d ≤∑d

j=1
ε
d < ε. Using an additional union bound, we can bound the probability that some Ωτ fails to

satisfy condition (†) by (r + 1)ε, as desired.

All that remains is to show that if an entry of Xk is observed with probability p as in Theorem 2, then
Xk will be observed on enough entries per column. We show this using a simple Chernoff bound.
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Proof of Theorem 2. Let m be the number of observations in a column of Xk. Since an entry of Xk

is observed with probability p, then E[m] = dp, so using the multiplicative form of the Chernoff
bound with β = 1/2 we get:

P
(
m ≤ 1

2
dp

)
= P

(
m ≤ (1− β)E[m]

)
≤ e−

β2

2 E[m] = e−
1
8dp ≤ ε

d
,

where the last inequality follows because p ≥ 8
d log d

ε by assumption. This shows that with probability
≥ 1− ε

d , a column in Xk will have at least dp
2 = m observations, with m as in (3). Using a union

bound on (r + 1)d columns, we conclude that with probability ≥ 1 − (r + 1)ε, at least (r + 1)d
columns of Xk will have m or more observations, distributed uniformly at random, as required by
Lemma 3, which in turn implies that Ωk will satisfy the conditions of Theorem 1 with probability
≥ 1− 2(r + 1)ε, as claimed.

To guarantee that each Xk is observed with probability p, we can simply sample uniformly among
X1, . . . ,XK with probability Kp, and hence we conclude that the sample complexity of MMC is
O(Kd max{r, log d}), as claimed.
Remark 3. Notice that we cannot apply Lemma 3 directly instead of Theorem 2, because if we
sample m entries selected uniformly at random from each column of Xk, there could be collisions
between multiple matrices in the mixture, which we do not allow, because that would imply observing
two values for the same entry in XΩ.

C More about our Assumptions

Essentially, A2 requires that X is a generic mixture of low-rank matrices. There are several equivalent
ways to interpret A1. For instance, A2 requires that the columns in Xk are drawn independently
according to an absolutely continuous distribution with respect to the Lebesgue measure on an
r-dimensional subspace in general position. Alternatively, recall that every rank-r matrix Xk ∈ Rd×n

can be expressed as UkΘk, where Uk ∈ Rd×r and Θ ∈ Rr×n. A2 equivalently requires that the
entries in Uk and Θk are drawn independently according to an absolutely continuous distribution
with respect to the Lebesgue measure on R.

A2 discards pathological cases, like matrices with identical columns or exact-zero entries, which
appear with zero-probability under A2. For instance, backgrounds in natural images can be highly
structured but are not perfectly constant, as there is always some degree of natural variation that is
reasonably modeled by an absolutely continuous (but possibly highly inhomogeneous) distribution.
For example, the sky in a natural image might be strongly biased towards blue values, but each sky
pixel will have at least small variations that will make the sky not perfectly constant blue. So while
these are structured images, these variations make them generic enough so that our theoretical results
are applicable.

Furthermore, since absolutely continuous distributions may be strongly inhomogeneous, they can be
used to represent highly coherent matrices (that is, matrices whose underlying subspace is highly
aligned with the canonical axes). Typical completion theory [1, 2, 5–20, 35, 36] cannot handle some
of the highly coherent cases that our new theory covers.

However, we point out that A2 does not imply coherence nor vice-versa. For example, coherence
assumptions indeed allow some identical columns, or exact-zero entries. However, they rule-out
cases that our theory allows. For example, consider a case where a few rows of Uk are drawn
i.i.d. N(0, σ1

2) and many rows of Uk are drawn i.i.d. N(0, σ2
2), with σ1 � σ2. This is a good

model for some microscopy and astronomical applications that have a few high-intensity pixels, and
many low-intensity pixels. Such Uk would yield a highly coherent matrix, which typical theory and
algorithms cannot handle, while ours can. To sum up, our assumptions are different, not stronger nor
weaker than the usual coherence assumptions [1, 2, 5–20, 35, 36], and we believe they are also more
reasonable in many practical applications.

D Fine Tuning AMMC

Section 5 presents our alternating algorithm for MMC, summarized in Algorithm 1 below. Like other
mixture problems, MMC is highly non-convex, and can be quite challenging in practice. In fact, to
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date, there exist no provable practical algorithms for even the simplest mixture problems. Arguably
the most common approach is to use alternating EM-type algorithms [16–19, 67–69], which can only
be guaranteed to converge to a local optimum, but perform well in practice. Like these algorithms,
AMMC also suffers from local minima. Consequently, its performance depends on initialization. In
similar classification problems, it is usually convenient to initialize centers as far as possible. In our
case, the centers are the subspaces containing the columns of the matrices in the mixture. Following
these ideas, we initialize AMMC with random subspaces as orthogonal as possible.

In addition to initialization, AMMC can be further tailored to specific settings (e.g., noise) by making
small adaptations. For example, suppose instead of XΩ we observe

XΩ + ZΩ,

where Z represents a noise matrix with zero-mean and variance σ2. Then, in step 4 of AMMC we
can keep erasing entries of ω until all the entries in xυk are within σ2 from Ûk. Alternatively, one
can keep in υk only the m entries of ω indicating the entries of xω that are most likely to correspond
to Xk, where m is a tuning parameter.

Similarly, when clustering in step 7, we can keep in Ω̂k only the entries of XΩ that are within σ2

from X̂k. Alternatively, we can keep in each Ω̂k only the M entries corresponding to the entries of
XΩ that are most likely to correspond to X̂k, where M is a tuning parameter that works as proxy
of the noise. At the end of the procedure, the entries that not assigned to any Ω̂k can be considered
outliers, thus providing a robust version of MMC. In fact, this is precisely the approach that we use in
our background segmentation experiments in section 6.

Finally, if there is some side information about Xk, it may be beneficial to use a particular LRMC
algorithm in step 8 of AMMC. For example, a two-phase sampling procedure [14] may be better if Xk

is coherent. On the other hand, the inexact augmented lagrange multiplier method for LRMC [35, 36]
is faster. Iterative hard singular value thresholding [13] is easily implemented and often has similar
performance as others [3]. Soft singular value thresholding [6] is better understood and has stronger
theoretical guarantees. There are many other methods for LRMC, like OptSpace [7], GROUSE [8],
FPCA [10], alternating minimization [16], and LMaFit [11, 12], to name a few. Depending on Xk, it
may be better to use one LRMC method or an other in step 8 of AMMC.

Algorithm 1: Alternating Mixture Matrix Completion (AMMC).
1. input: Partially observed data matrix XΩ.
2. initialize: Guess Û1, . . . , ÛK ∈ Rd×r.
repeat

CLUSTER:
for j = 1, . . . ,n, and k = 1, . . . ,K do

3. xω = jth column of XΩ.
4. Erase entries from ω to obtain υk ⊂ ω indicating entries likely to correspond to Xk.
5. Estimate coefficient of jth column of Xk:

θ̂k = (ÛkT
υkÛ

k
υk)
−1ÛkT

υkxυk .

6. The jth column of X̂k
Ω is given by x̂k

ω = Ûk
ωθ̂

k.
end for
7. Cluster the entries of XΩ according to their closest match among X̂1

Ω, . . . , X̂
K
Ω

7.. to produce Ω̂1, . . . , Ω̂K.
COMPLETE:
for k = 1, . . . ,K do

8. Complete X
Ω̂

k using LRMC to obtain X̂k.
9. Ûk = leading r singular vectors of X̂k.

end for
until convergence.
10. output: Completed matrices X̂1, . . . , X̂K.
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E More Real Data Results

In Section 6 we gave one example of two images from the Yale B [64] dataset being reconstructed
from a single mixture. Figure 4 shows more results. Section 6 also shows the segmented foreground
of a video frame from the. Figure 5 shows more results from the Wallflower [65] and the I2R [66]
datasets.
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Figure 4: Top: Mixture matrix X, containing pixels from two face images. Bottom 2: Low-rank matrices X̂1

and X̂2 recovered from X.
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Original ————- Robust PCA ————- ——— AMMC (this paper) ———

Figure 5: Video frames segmented into background and foreground using Robust PCA (displaying the best
results amongst [35–39]) and AMMC.
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