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Abstract—In this paper we propose a novel adaptive algorithm
that provably performs low-rank matrix completion (LRMC)
from restricted sets of observations, under ideal or noisy measure-
ments, in lieu of coherence assumptions, with minimal sampling
rates and optimal computational complexity. We discuss the main
advantages of the adaptive setting of LRMC, and complement
our theoretical analysis with experiments, illustrating the effec-
tiveness of our algorithm.

I. INTRODUCTION

The problem of low-rank matrix completion (LRMC) con-
sists on estimating the missing entries in a rank-r matrix.
This scenario arises in a wide range of practical applications,
ranging from image processing [1] to collaborative filtering
and recommender systems [2, 3], among others [4–8].

LRMC has been widely studied under a missing-at-random
and bounded-coherence model [9–18], and recently under an
adaptive setting [19], where one may select, on the go, which
entries to observe. This is tightly related to the problem of
identifying a low-rank approximation of a matrix from a subset
of its entries [20–23].

These approaches assume that one may sample unrestrict-
edly, e.g., that one may choose to observe all entries of a
given column, or assume access to certain characteristics of
the matrix, e.g., its coherence, or the norms of its columns.
This is a valid assumption for certain applications, e.g., when
the matrix is stored in disk, and one may observe entries of
the matrix with absolute freedom. However, this is not the
case in many LRMC applications, where the entries one may
choose to observe are typically limited. Take for example
recommender systems, where obtaining a complete column
equates to asking a single user (column) to evaluate every item
(row). In these problems the number or rows can be very large,
hence this can be an unreasonable thing to ask. Moreover, the
combinations of rows that one may sample could be restricted.
For example, some users (e.g., children) may be well suited
to evaluate certain subsets of items (e.g., toys or candies),
but unable to evaluate others (e.g. wines or home appliances).
An other example arises in distributed settings, where at each
location one may only sense a subset of all the information.

Motivated by scenarios like this, we propose a novel adap-
tive algorithm that provably performs LRMC from limited
observations (e.g., only sampling few observations per column,
which amounts, for example, to only asking each user about
a few selected items), under ideal or noisy measurements, in
lieu of coherence assumptions, with minimal sampling rates
and optimal computational complexity.

Organization of the paper
In Section II we formally state the problem and present our

algorithm and our main results, which we prove in Section IV.
In Section III we discuss related work and the main advantages
of using adaptive strategies for LRMC. Section V presents
experiments that support our findings and demonstrate the
effectiveness of our approach.

II. MODEL, ALGORITHM AND MAIN RESULTS

Let X be the d ×N data matrix of rank-r that we aim to
reconstruct by observing a few selected subset of the entries
of the noisy matrix Y given by

Y = X + Z,

where the elements of Z are i.i.d., zero-mean random variables
with variance σ2 and finite fourth moment. To characterize the
sampling restrictions, let Υ ⊂ 2{1,...,d} indicate the (unknown)
sets of rows where one may choose to sample a column of Y.

We will drop the coherence assumptions typically required
for LRMC. Instead, our statements hold for almost every (a.e.)
X, with respect to the uniform measure on X, the set of all
d×N rank-r matrices. The zero-measure subset of X for which
our statements do not hold is essentially that of pathological
matrices, e.g., ones with zero rows or columns.

Our strategy (summarized in Algorithm 1) is mainly divided
into an exploration phase and a reconstruction phase. In
the exploration phase (which is the adaptive portion of the
algorithm) we will search for a sampling matrix Ω (compatible
with the allowed observations in Υ). The matrix Ω will encode
the information of the entries that we will choose to observe
in the reconstruction phase, where we will estimate X from
the selected samples.

More precisely, let Ω be a d× (d− r) matrix with exactly
r+ 1 nonzero entries per column, and consider the following
condition:
C1 Every matrix formed with a subset of n columns of Ω

has at least n+ r nonzero rows.
There exist plenty of matrices Ω satisfying C1, for example

Ω =


1

I


}
r d− r, (1)

where 1 denotes a block of all 1’s and I the identity matrix. In
addition, let ωi ⊂ {1, . . . , d} denote the set of nonzero rows
in the ith column of Ω.



In the exploration phase, we will propose a matrix Ω
satisfying C1, and verify whether it is compatible with the
allowed observations, i.e., whether

{ωi}d−ri=1 ⊂ Υ. (2)

Notice that Υ is unknown, but we can test whether ωi ∈ Υ
by simply trying to sample a column of Y in ωi. If (2) is
satisfied, we will proceed to the recovery phase. Otherwise,
we will propose new matrices Ω satisfying C1 until we find
one that also satisfies (2). If there exists no such matrix Ω, X
cannot be recovered by any means (see Corollary 1 in [25]).

Once we have a matrix Ω satisfying C1 and (2), we will
proceed to the recovery phase, where we will observe Ni ≥ r
columns of Y in the rows of ωi to obtain an (r + 1) × Ni

matrix Yωi
. We will use Yωi

to estimate Sωi
⊂ Rr+1, the

restriction of the subspace S spanned by the columns of X
to the rows in ωi. In the noiseless setting, Ni = r linearly
independent columns will uniquely and perfectly determine
Sωi

, and in the presence of noise, the larger Ni, the better
our estimate of Sωi

will be.
To estimate Sωi

, we will compute âωi
, the (r+1)th singular

vector of 1
Ni

Yωi
YT
ωi

(the sample covariance matrix of Yωi
).

This will be our estimate of a nonzero vector aωi
∈ kerSωi

,
(which characterizes Sωi

, as Sωi
is an r-dimensional subspace

of Rr+1). We will do this for every column in Ω, thus
obtaining estimates of different portions of S (characterized by
{âωi

}d−ri=1 ). We will next stitch together these portions obtain
an estimate of the whole subspace S. To this end, we will
construct the vector âi ∈ Rd with the entries of âωi

in the
rows of ωi, and zeros elsewhere. Doing this for every âωi ,
we will obtain the matrix Â = [â1 · · · âd−r]. The subspace
Ŝ := ker ÂT will be our estimate of S.

Once S is known, X can be optimally recovered observing
only r entries per column. To see this, let U be a basis of S,
and select an arbitrary set υ ∈ Υ with exactly r elements. We
will use the subscript υ to denote restriction to the rows in υ.
Since the coefficients of column x in the basis U are given by
θ = (UT

υUυ)−1UT
υxυ , we can recover the unobserved entries

of this column as x = Uθ. We may thus observe Y on the
r rows in υ to obtain Yυ , and project Yυ onto Ŝ to obtain
X̂ := Û(ÛT

υÛυ)−1ÛT
υ , our estimate of X given Yυ .

Our first result states that Algorithm 1 will recover the sub-
space S with arbitrary accuracy, as long as Ni is sufficiently
large to overcome the noise and achieve the desired level of
precision, and
A1 There exists a matrix Ω satisfying C1 and (2).

Theorem 1. Let A1 hold, and let Ŝ be as in Algorithm
1. Then for a.e. X, Ŝ → S as Ni grows.

To present our next result, define X? as the optimal esti-
mator of X given Yυ , i.e.,

X? := arg min
X′⊂S

‖Yυ −X′υ‖.

Algorithm 1: Adaptive Linear Algorithm for Restricted
Completion Over Noise (ALARCON)

- Take a matrix Ω satisfying C1.
- while Ω fails to satisfy (2) do

- Ω = new matrix satisfying C1.
- for i = 1 to d− r do

- Observe Ni ≥ r columns of Y in the nonzero rows
of ωi to obtain the (r + 1)×Ni matrix Yωi

.
- Compute âωi = (r + 1)th singular vector of

1
Ni

YωiY
T
ωi

.
- Construct âi ∈ Rd with the entries of âωi

in the
nonzero rows of ωi, and zeros elsewhere.

- Construct Â = [â1 · · · âd−r].
- Take Û, a basis of Ŝ = ker ÂT.
- Take υ ∈ Υ with exactly r elements.
- Observe Y on the rows in υ to obtain Yυ .
- Estimate X̂ = Û(ÛT

υÛυ)−1ÛT
υ .

The next theorem states that the completion given by Algo-
rithm 1 will be arbitrarily close to the optimal completion X?

if Ni is sufficiently large to achieve the desired precision.

Theorem 2. Let A1 hold, and let X̂ be the output of
Algorithm 1. Then for a.e. X, X̂→ X? as Ni grows.

As a direct consequence of these results, we obtain the
following specialization. It shows that in the absence of noise,
Algorithm 1 will perfectly recover X in linear time (in the
ambient dimension d) using only r(d − r + N) samples (the
the minimum required for completion).

Theorem 3. Let A1 hold, and suppose Z = 0. Let X̂ be
the output of Algorithm 1 with Ni = r. Then X̂ = X for
a.e. X.

III. WHAT WE GAIN BY BEING ADAPTIVE

Unsurprisingly, adaptive sampling brings advantages to
LRMC, the most relevants being sample and computational
complexity. We will use this section to give a brief discussion
on these topics, and compare our results with related work.

It is known that O(log d) random samples per column are
necessary to guarantee that LRMC is possible, but completing
a matrix with such few random samples may be compu-
tationally prohibitive, as it may require solving a complex
polynomial system of equations [24].

On the other hand, several algorithms have been shown to
complete with high probability (w.h.p.) incoherent matrices
with as little as O(rµ log d) random samples per column (µ
being the coherence parameter indicating the alignment of
the matrix [9]) using convex optimization [9–14], iterative



thresholding [15, 16] and alternating minimization [17, 18],
among others. If the distribution of information over the matrix
is known, nuclear norm minimization has also been shown
to complete coherent matrices with as little as O(r log2 d)
random samples per column [14]. These sampling assumptions
are sufficient, but not necessary, and are sometimes unverifi-
able or unjustified in practice, as typically neither µ nor the
distribution of information over the matrix are known.

In the adaptive setting, the strategy in [19] samples en-
tire columns of an incoherent matrix, and requires either
O(r3/2 log r) additional samples per column to complete the
rest of the matrix in the noiseless case, or O(r3/2polylogd) in
the presence of noise.

In contrast, a simple count of the degrees of freedom in
a d × N matrix of rank-r shows that r(d − r + N) samples
are necessary for completion, which is exactly the number of
samples required by Algorithm 1. Thus our adaptive strategy
achieves the minimum sampling required for completion.

In addition, Algorithm 1 operates with as little as r + 1
samples per column (the minimum required, as X is rank-r,
so observing columns with at least r + 1 entries is necessary
for completion [24]). Therefore, Algorithm 1 works even on
the minimal sampling regime.

Furthermore, our approach drops all coherence assumptions,
and works with probability 1, as opposed to w.h.p.

On the other hand, in the noiseless setting, the fastest
algorithm that we know of has a computational complexity
of O(dr3µ log3 d) [18]. On this end, Algorithm 1 requires to
compute: (i) the singular value decomposition (SVD) of d−r
small matrices, of size (r+1)×r, to obtain {âωi

}d−ri=1 , (ii) the
SVD of a sparse d× (d− r) matrix (with only r+ 1 nonzero
entries per column), to obtain a basis of Ŝ = ker ÂT, and (iii)
some matrix multiplications to estimate X once Ŝ is known.

This gives Algorithm 1 a computational complexity of
O(dr3), i.e., Algorithm 1 achieves linear dependency on d
(ideal, as d is usually large). We thus conclude that adaptive
sampling also brings computational advantages to LRMC.

IV. PROOFS

Let Xωi
be the (r+ 1)×Ni submatrix of X corresponding

to Yωi
. Notice that for a.e. X, ker XT

ωi
is a 1-dimensional

subspace of Rr+1.
Let x denote an arbitrary column of X, and xωi

∈ Rr+1

denote the restriction of x to the rows of ωi. Letting aωi be
a nonzero vector of ker XT

ωi
, it is clear that 〈aωi ,xωi〉 = 0.

Defining ai as the vector in Rd with the entries of aωi
in

the rows of ωi, and zeros elsewhere, we have that 〈ai,x〉 =
0. Since this is true for every i, and x was arbitrary, letting
A := [a1 · · · ad−r] we conclude that ATX = 0, which
implies X ∈ ker AT.

If A is full-rank, then ker AT = S, the subspace spanned
by the columns of X. This will be the case if and only if
the (d− r) columns in A are linearly independent, which by
Lemma 2 in [25], will be the case if and only if every matrix
formed with a subset of n columns of A has at least n + r
nonzero rows. Since for a.e. X, an entry of A will be nonzero

if and only if the corresponding entry of Ω is nonzero (Lemma
1 in [25]), we have shown the following.

Lemma 1. For a.e. X, ker AT = S if and only if C1 holds.

Next observe that span{Xωi
} = span{Xωi

XT
ωi
}. With this

in mind, let (W,Λ,V) denote the SVD of 1
Ni

Xωi
XT
ωi

, such
that W = [Uωi

aωi
], where Uωi

spans the same subspace as
Xωi , and ai is a unitary vector in ker XT

ωi
.

Similarly, let (Ŵ, Σ̂, V̂) denote the SVD of 1
Ni

YωiY
T
ωi

,
and let Ŵ = [Ûωi

âωi
]. Recall that by assumption, Y =

X + Z, where cov(Z) = σ2I, so by the strong law of large
numbers (all convergences are almost surely with respect to
the probability measure on Z), as Ni grows,

1
Ni

YωiY
T
ωi
−→ 1

Ni
XωiX

T
ωi

+ σ2I.

It follows that ŴΣ̂V̂T −→W(Λ + σ2I)VT, which implies
âωi → aωi . We thus have that Â→ A. Since Ω satisfies C1,
we know by Lemma 1 that ker AT = S, hence ker ÂT → S,
which concludes the proof of Theorem 1.

In order to show Theorem 2, notice that the optimal es-
timator of X given Yυ is given by X? = BYυ , with
B := U(UT

υUυ)−1UT
υ . Let B̂ = Û(ÛT

υÛυ)−1ÛT
υ . By the

same arguments as before, Â → A as Ni grows, which
implies B̂→ B. We thus conclude that X̂→ X?, as desired.

We point out that though very similar, B is not exactly the
projection operator onto S (given by U(UTU)−1UT). The
operator B will essentially receive an r-dimensional vector xυ ,
compute its coefficients in the basis U (through the projection-
like operation: θ = (UT

υUυ)−1UT
υxυ), and then use those

coefficients to recover the unobserved entries (x = Uθ).
In the noiseless setting, X? = X, and Â = A, which

implies X̂ = X, thus showing Theorem 3.

V. EXPERIMENTS

Our results show that Algorithm 1 will estimate X ef-
ficiently and accurately from a few cleverly selected noisy
samples. To support these findings, we simulated the setup
above with d = 100, r = 10, and different values for the
number of columns Ni and the noise level σ.

To this end, we first generated matrices U ∈ Rd×r, Θ ∈
RN×r and Z ∈ Rd×N , with N = Ni(d−r). Next we obtained
the low-rank matrix X = UΘT, and the noisy matrix Y =
X + Z (which we then normalized). The entries of U and Θ
were drawn i.i.d., N(0, 1), and the entries of Z were drawn
i.i.d., N(0, σ2).

We ran Algorithm 1 (where we observe a few selected
entries of Y to estimate X) with Ω as in (1). We repeated
this experiment 100 trials, and recorded the accuracy of
our algorithm as a function of Ni and σ. The results are
summarized in Figure 1.

Theorem 2 states that X̂ → X? as Ni grows, where X?

is the optimal estimator of X from the observed data. This is
illustrated in Figure 1. Of course, how large Ni needs to be
will depend on the desired level of precision, and the noise
level. To investigate this, we used the results above to compute
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Fig. 1. Completion error of Algorithm 1 as a function of Ni and σ. For
each pair (Ni, σ), we simultaneously present the three normalized errors:
‖X − X̂‖/‖X̂‖, ‖X? − X̂‖/‖X̂‖ and ‖U − Û‖/‖Û‖, where X? is the
optimal estimator of X from the observed data, and X̂, Û are the estimators
of Algorithm 1. Theorem 1 states that Û → U as Ni grows. Once U is
known, X can be estimated optimally (Theorem 2 states that X̂ → X?). It
is thus not surprising that all these error quantities are very close.

the minimum Ni for which ‖X?−X̂‖/‖X̂‖ ≤
√
σ. The results

are shown in Figure 2.
Our next experiments involve a comparison with three non-

adaptive algorithms: iterative thresholding [16], alternating
minimization [17] and EM [26]. We first tried completing
a noiseless matrix observed in the same entries as the ones
sampled by Algorithm 1, with the setup described above.
Unfortunately none of these algorithms succeeded at this task.
This supports theoretical results, which show that even when
non-adaptive LRMC is theoretically possible using only the
minimum required r + 1 samples per column, this may be
computationally prohibitive [24].

Finally, we studied the behavior of these algorithms at
completing a noiseless 100×100, rank-10 (same as before) as
a function of `, the number of random samples per column.
Figure 2 shows that in the best-case scenario, these algorithms
may succeed with about 30 random samples per column.
Nonetheless, for settings like this, theoretical results of these
algorithms require all entries to be observed to guarantee the
correctness and uniqueness of a result.

In contrast, our adaptive strategy provably achieves theo-
retical optimal sampling rates, using computational efficient
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Fig. 2. Left: minimum number of columns Ni for which ‖X?−X̂‖/‖X̂‖ <√
σ, where X? is the optimal estimator of X from the observed data, and X̂

is the output of Algorithm 1. Theorem 2 states that X̂→ X? as Ni grows.
Right: completion error of a noiseless matrix as a function of p := `/d (the
fraction of random samples per column) for three non-adaptive algorithms.
Displaying the lowest completion error (best-case scenario) out of 100 trials.

algorithms, even in the presence of noise.

VI. CONCLUSIONS

In this paper we present an adaptive, provable LRMC algo-
rithm that only uses limited sets of observations, under ideal
or noisy measurements, in lieu of coherence assumptions, with
minimal sampling rates and optimal computational complexity,
thus showing that the adaptive sampling setting brings several
advantages over passive sampling.
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