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Abstract

This paper presents r2pca, a random con-
sensus method for robust principal compo-
nent analysis. r2pca takes ransac’s princi-
ple of using as little data as possible one step
further. It iteratively selects small subsets
of the data to identify pieces of the princi-
pal components, to then stitch them together.
We show that if the principal components are
in general position and the errors are su�-
ciently sparse, r2pca will exactly recover the
principal components with probability 1, in
lieu of assumptions on coherence or the dis-
tribution of the sparse errors, and even un-
der adversarial settings. r2pca enjoys many
advantages: it works well under noise, its
computational complexity scales linearly in
the ambient dimension, it is easily paralleliz-
able, and due to its low sample complexity,
it can be used in settings where data is so
large it cannot even be stored in memory.
We complement our theoretical findings with
synthetic and real data experiments show-
ing that r2pca outperforms state-of-the-art
methods in a broad range of settings.

1 Introduction

In many relevant applications one aims to find a low-
dimensional subspace that approximates a large data
matrix M. Principal Component Analysis (PCA) is
one of the most widely used techniques for this pur-
pose. Unfortunately, a single grossly corrupted datum
can severely compromise its performance. Hence there
is a wide variety of approaches to make PCA robust.
Examples include M-estimators [1], random sampling
[2], influence function techniques [3], alternating min-
imization [4] and convex relaxations [5–10]. Other ap-
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proaches use convex optimization methods on subsets
of the data (e.g., full rows and full columns) to improve
computational complexity [11, 12].

One of the most natural and widely used algorithms
for robust estimation is random sample consensus
(ransac) [2]. ransac is simple yet powerful. It is
popular because it makes almost no assumptions about
the data, and it does not require unrealistic conditions
to succeed. It has theoretical guarantees, works well
in practice, and has enjoyed many improvements since
its inception, e.g., [13–15]. The ransac version of
PCA iteratively selects a few columns in M to define
a candidate subspace, until it identifies a subspace that
agrees with other columns in M. This will successfully
identify the subspace that we are looking for, as long
as M has enough uncorrupted columns.

But in many modern applications, such as image pro-
cessing and networks data analysis, every column in
M may have a few grossly corrupted entries. This
makes all columns in M outliers, hence standard ro-
bust methods like ransac are no longer applicable. In
this setting M can be better modeled as the sum of a
low-rank matrix L and a sparse matrix S representing
the corrupted entries. The goal is to identify the sub-
space U spanned by the columns in L. This problem is
often called robust PCA (RPCA) [6]. The last decades
have seen great approaches to this problem [16], yet it
remained unclear how to extend ransac’s principles
to this setting [3].

The main contribution of this paper is r2pca: a
random consensus algorithm for RPCA. r2pca takes
ransac’s principle of using as little data as possible
one step further. It iteratively selects small subsets
of the entries in M to identify pieces of the subspace
U . This process is repeated until we identify enough
pieces to stitch them together and recover the whole
subspace. The key idea behind r2pca is that sub-
spaces can be easily and e�ciently recovered from a
few of its canonical projections [17]. These canonical
projections are the pieces that r2pca aims to identify.
See Figure 1 for some intuition.

Our main result shows that r2pca will exactly recover
the subspace that we are looking for with probabil-
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Figure 1: First: Each column in a rank-r matrix L corresponds to a point in an r-dimensional subspace U . In these
figures, U is a 1-dimensional subspace (line) in general position, and the columns in L are drawn generically from U , that
is, independently according to an absolutely continuous distribution with respect to the Lebesgue measure on U . For
example, according to a gaussian distribution on U . Second: Adding S equates to corrupting some coordinates of some
columns in L. In this figure each point is corrupted in only one coordinate. As a result, the corrupted points no longer
lie in U . So, how can we identify U from these corrupted points? Third: The key idea behind r2pca is that since errors
are sparse, if we only focus on a few coordinates of a few columns at a time, it is likely that the selected columns are
uncorrupted on the selected coordinates. We can verify whether this is the case, because the projections of the selected
columns onto the selected coordinates will agree if and only if the columns are uncorrupted in these coordinates. In this
illustration, r2pca only focused on the (x, y) coordinates and on two columns. The projections of both columns onto the
(x, y) coordinates agree. Namely, they both lie in U!1 . Hence we can be sure that the (x, y) coordinates of these columns
are uncorrupted, and that U!1 is actually equal to the projection of the subspace U that we aim to identify. Last: We
can repeat this procedure for di↵erent sets of coordinates and columns, until we obtain enough projections to reconstruct
the whole subspace.

ity 1, as long as M is generic, and the corrupted en-
tries are su�ciently sparse. In contrast to popular
convex relaxation methods (e.g., [5–12]), our results
make no assumptions about coherence or the distri-
bution of the sparse errors. In fact, our results hold
even under adversarial settings where the errors are
purposely located to complicate success. In its noisy
variant, r2pca can consistently estimate the desired
subspace within the noise level. The computational
complexity of r2pca scales linearly in the ambient di-
mension. In addition, r2pca enjoys many of ransac’s
advantages, and many of ransac’s improvements can
be easily adapted to r2pca. For instance, r2pca can
run in parallel, with di↵erent computers searching for
di↵erent pieces (canonical projections) of the subspace.
This can greatly reduce computation time, which is
of great interest in general, and paramount in real-
time applications. Furthermore, r2pca’s principle of
studying subspaces by pieces also improves computa-
tional and sample complexity. This is because r2pca

only uses small subsets of the data at a time. This is of
particular importance in settings where M is so large
it cannot even be stored in memory. We complement
our theoretical findings with synthetic and real data
experiments showing that r2pca outperforms state-
of-the-art methods, both in terms of speed and accu-
racy, in a broad range of settings.

2 Model and Main Results

Suppose we observe a d ⇥ n data matrix M, given by

M = L+ S, (1)

where L is rank-r and S is sparse. The goal is to
identify the r-dimensional subspace U spanned by the
columns of L, or slightly more demanding, determine
S and L. Consider the following assumptions, where
Gr(r,Rd) denotes the Grassmannian manifold of r-
dimensional subspaces in Rd, and k · k0 denotes the
`0-norm, given by the number of nonzero entries.

(A1) U is drawn according to an absolutely contin-
uous distribution with respect to the uniform
measure over Gr(r,Rd).

(A2) The columns of L are drawn independently
according to an absolutely continuous distri-
bution with respect to the Lebesgue measure
on U .

(A3) The nonzero entries in S are drawn indepen-
dently according to an absolutely continu-
ous distribution with respect to the Lebesgue
measure on RkSk0 .

(A4) S has at most n�r
2(r+1)↵ nonzero entries per row

and at most d�r
2(r+1)↵�1 nonzero entries per col-

umn, with ↵ � 1.

A1 requires that U is a subspace in general position,
and A2 requires that the columns in L are drawn
generically from this subspace. Together, A1 and A2
require that L is a generic rank-r matrix. Similarly,
A3 requires that S is a generic sparse matrix. See Sec-
tion 4 for a further discussion about our assumptions
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and their relation to other typical assumptions from
the literature.

A4 requires that M has at most O(n/r↵) corrupted
entries per row and at most O(d/r↵�1) corrupted en-
tries per column. Notice that since decomposing M
is the same as decomposing MT, assumption A4 can
be interchanged in terms of rows and columns. A4
is a reasonable assumption because in most problems
where this setting arises, S is sparse and r ⌧ d, n,
whence A4 allows a large number of corrupted entries
in M. The parameter ↵ determines the sparsity level
of S, which in turn determines the computational com-
plexity of r2pca. The larger ↵, the sparser S, and the
faster r2pca will succeed.

The main result of this paper is the next theorem. It
states that r2pca (Algorithm 1 below) will exactly re-

cover U , L and S on O((d+n)2r
2�↵

) iterations (linear
in d and n). In the extreme case where S has too many
errors (↵ = 1), r2pca could require exponential time
in r. But if S is su�ciently sparse (↵ � 2), r2pca
will succeed in linear time in r. This is true even
in the adversarial setting where the errors are pur-
posely located to complicate success. In other words,
the computational complexity in Theorem 1 considers
the worst-case scenario. So in practice, as shown in
our experiments, r2pca can be much faster and allow
a much larger number of corrupted entries. The proof
is given in Appendix A.

Theorem 1. Let A1-A4 hold. Let Û, L̂ and Ŝ be

the output of r2pca. Then span{Û} = U , L̂ = L
and Ŝ = S with probability 1. Furthermore, the

expected number of iterations required by r2pca

is upper bounded by (d+ n� r)2(r+1)2�↵

.

Remark 1. Throughout the paper we assume that the

rank r is known. If this is not the case, r can be esti-

mated by iteratively selecting (⌧ + 1)⇥ (⌧ + 1) minors

in M, and verifying their rank (or their singular value

decomposition in the noisy setting). Under A1-A4,
with probability 1 there will be a (⌧ + 1) ⇥ (⌧ + 1),
rank-⌧ minor in M if and only if r = ⌧ . So we can

start with ⌧ = 1. If we find a 2 ⇥ 2 minor in M, we

know that r = 1. If there exists no such minor, we

know that r � 2. We can iteratively repeat this process

until we find a (⌧ +1)⇥ (⌧ +1) minor of rank-⌧ . A1-
A4 imply that if r = ⌧ , then for every ! ⇢ {1, . . . , d}
with ⌧ +1 entries, M! will contain a (⌧ +1)⇥ (⌧ +1),
rank-⌧ minor. Furthermore, using the same reasoning

as in the proof of Theorem 1, one can show that on ex-

pectation, it would take no more than O(2r
2�↵

) trials

to find such a minor (recall that ↵ � 1 determines the

sparsity level in S).

3 Algorithm

In this section we introduce r2pca in its most ba-
sic setting (Algorithm 1). In Section 5 we discuss
how to generalize it to noisy settings. From a high
level perspective, r2pca searches for small subsets of
uncontaminated data in M to obtain pieces of U to
then stitch them together. Once U is known, r2pca
searches for a few uncontaminated entries in each col-
umn of M to recover the coe�cients of L. Once L is
known, S can be trivially recovered through (1).

The key idea behind r2pca is that subspaces can
be exactly and e�ciently recovered from a few of its
canonical projections [17]. So rather than attempting
to identify U directly, we will aim to identify small
projections of U , knowing that there is a simple way
to stitch these projections together to recover U . More
precisely, let ⌦ be a d ⇥N matrix with exactly r + 1
nonzero entries per column, and let !i ⇢ {1, 2, . . . , d}
index the nonzero entries in the ith column of ⌦. !i

indicates the canonical coordinates involved in the ith

projection that we will aim to identify. For any sub-
space, matrix or vector that is compatible with !i,
we will use the subscript !i to denote its restric-
tion to the coordinates/rows in !i. For example,
M!i 2 R(r+1)⇥n denotes the restriction of M to the
rows in !i, and U!i ⇢ Rr+1 denotes the projection of
U onto the coordinates in !i.

Our goal is to identify a collection of projections
{U!i}Ni=1 such that U can be recovered from these pro-
jections. Whether this is the case depends on the !i’s,
i.e., on ⌦. Fortunately, Theorem 1 in [17] specifies the
conditions on ⌦ to guarantee that U can be recovered
from {U!i}Ni=1. To present this result, let us intro-
duce the matrix A. A1 implies that with probability
1, U!i is a hyperplane, i.e., an r-dimensional subspace
in Rr+1. As such, it is characterized by its orthogonal
direction, which we will call a!i . More precisely, let
a!i 2 Rr+1 be a nonzero vector in kerU!i , and let ai
be the vector in Rd with the entries of a!i in the loca-
tions of !i, and zeros elsewhere. Let A be the d⇥N
matrix formed with {ai}Ni=1 as columns. This way, A
encodes the information of the projections {U!i}Ni=1.
With this, we are ready to present Theorem 1 in [17],
which we restate here as Lemma 1 with some adapta-
tions to our context.

Lemma 1 (Theorem 1 in [17]). Let A1 hold. With

probability 1, U = kerAT
if and only if

(i) There is a matrix ⌦0
formed with d�r columns of

⌦, such that every matrix formed with a subset of

⌘ columns in ⌦0
has at least ⌘ + r nonzero rows.
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There exist plenty of matrices ⌦ satisfying (i). For
example:

where 1 and 0 denote blocks of all 1’s and all 0’s.
One may easily verify that ⌦ satisfies condition (i) by
taking ⌦0 = ⌦. Notice that A is sparse (it only has
r+1 nonzero entries per column), so computing kerAT

can be done e�ciently.

Lemma 1 implies that N = d� r projections are nec-
essary and su�cient to recover U . Furthermore, it
tells us which projections to look for, and how to re-
construct U from these projections. Hence, our strat-
egy will be to select a d⇥ (d� r) matrix ⌦ satisfying
(i), then identify the projections {U!i}d�r

i=1 , and finally
construct A according to these projections to recover
U as kerAT.

In principle, our strategy to identify each projection
is very similar to ransac. Given !i, we iteratively
select r + 1 columns of M!i uniformly at random.
Let M0

!i
2 R(r+1)⇥(r+1) be the matrix formed with

the selected columns. span{M0
!i
} defines a candi-

date projection of U onto !i. A1-A3 imply that with
probability 1, span{M0

!i
} = U!i if and only if M0

!i

has no corrupted entries. This will be the case if and
only if rank(M0

!i
) = r. We will thus verify whether

rank(M0
!i
) = r. If this is not the case, this candidate

projection will be discarded, and we will try a di↵erent
M0

!i
. On the other hand, if rank(M0

!i
) = r, then we

know that span{M0
!i
} is the projection U!i that we

were looking for. In this case, we can construct ai as
before. This process is repeated for each column !i

in ⌦ to obtain A. Since ⌦ satisfies (i), we know by
Lemma 1 that at the end of this procedure we will have
enough projections to reconstruct U as dimkerAT.

At this point, we have already recovered U . Let
U 2 Rd⇥r be a basis of U . We will now estimate
the coe�cient matrix ⇥ 2 Rr⇥n such that L = U⇥.
Let m be a column in M, and let ! be a subset of
{1, 2, . . . , d} with exactly r + 1 elements. A1-A3 im-
ply that with probability 1, m! will lie in U! if and
only if all entries in m! are uncorrupted. We will thus
iteratively select a set ! indexing r+1 random entries
in m until we find an ! such that m! 2 U!. Once we
find such !, the coe�cient vector of the corresponding
column in L will be given by ✓ := (UT

!U!)�1UT
!m!.

This process will be repeated for every column in M to
obtain the coe�cient matrix ⇥, which together with
U determine L as U⇥. Once L is known, one can
trivially recover S through (1). r2pca is summarized
in Algorithm 1.

Algorithm 1: Random Robust PCA (r2pca)

1 Input: Data matrix M 2 Rd⇥n, rank r,

2 matrix ⌦ 2 {0, 1}d⇥(d�r) satisfying (i).
3 PART 1: Estimate U
4 for i = 1, 2, . . . , d� r do
5 !i = indices of the r + 1 nonzero rows of

6 the ith column in ⌦.
7 repeat
8 M0

!i
2 R(r+1)⇥(r+1) = r+ 1 columns of

M!i , selected randomly.
9 until rank(M0

!i
) = r.

10 a!i 2 Rr+1 = nonzero vector in kerM0T
!i
.

11 ai 2 Rd = vector with the entries of a!i in
12 the locations of !i, and zeros
13 elsewhere.

14 A 2 Rd⇥(d�r) = [a1 a2 · · ·ad�r].

15 Û 2 Rd⇥r = basis of kerAT.

16 PART 2: Estimate ⇥
17 for each column m in M do
18 repeat
19 ! = subset of {1, 2, . . . , d} with r + 1
20 elements, selected randomly.

21 until m! 2 span{Û!}.
22 ✓̂ = (ÛT

!Û!)�1ÛT
!m!.

23 Insert ✓̂ into ⇥̂.

24 Output: Û, L̂ = Û⇥̂, Ŝ = M� L̂.

4 More about our Assumptions

Essentially, A1-A3 require that M is a combination
of a generic sparse matrix, and a generic low-rank ma-
trix. This discards pathological cases, like matrices
with identical columns or exact-zero entries. Exam-
ples of these cases could arise in unnatural, cartoon-
like images.

However, A1-A3 allow realistic cases, like natural im-
ages. For instance, backgrounds in natural images can
be highly structured but are not perfectly constant, as
there is always some degree of natural variation that is
reasonably modeled by an absolutely continuous (but
possibly highly inhomogeneous) distribution. For ex-
ample, the sky in a natural image might be strongly
biased towards blue values, but each sky pixel will have
at least small variations that will make the sky not
perfectly constant blue. So while these are structured
images,these variations make them generic enough so
that our theoretical results are applicable. This is con-
firmed in our real data experiments.

Furthermore, because absolutely continuous distribu-
tions may be strongly inhomogeneous, they can be
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used to represent highly coherent matrices (that is,
matrices whose underlying subspace is highly aligned
with the canonical axes). Previous theory and meth-
ods for RPCA cannot handle some of the highly co-
herent cases that our new theory covers and that our
new algorithm handles well (as demonstrated in our
experiments).

We point out that A1-A3 do not imply coherence nor
vice-versa. For example, coherence assumptions in-
deed allow some identical columns, or exact-zero en-
tries. However, they rule-out cases that our theory
allows. For example, consider a case where a few rows
of U are drawn i.i.d. N(0,�2

1) and many rows of U are
drawn i.i.d. N(0,�2

2), with �1 � �2. This is a good
model for some microscopy and astronomical applica-
tions that have a few high-intensity pixels, and many
low-intensity pixels. Such U would yield a highly co-
herent matrix, which existing theory and algorithms
cannot handle, while our results can (this can be con-
firmed in our experiments).

To sum up, our assumptions are di↵erent, not stronger
nor weaker than the usual coherence assumptions, and
we believe they are also more reasonable in many prac-
tical applications.

5 Handling Noise

In practice, all entries in M may be noisy, even the
ones that are not corrupted by gross errors. We can
model this as

M = L+ S+W, (2)

where L and S are as before, and W represents a noise
matrix. The goal is the same as before: determine L
and S from M.

Recall that r2pca’s goal is to identify the projec-
tions {U!i}d�r

i=1 to then reconstruct U . In the noise-
less setting, we do this by iteratively selecting (r +
1)⇥ (r+1) matrices M0

!i
, and checking their rank. If

rank(M0
!i
) = r, then we know that all entries in M0

!i

are uncorrupted, whence U!i is given by span{M0
!i
}.

But in the noisy setting, rank(M0
!i
) = r + 1 in gen-

eral, regardless of whether these columns are corrupted
by gross errors. Hence we cannot determine directly
whether the columns in M0

!i
are uncorrupted by sim-

ply checking whether rank(M0
!i
) = r, as we did in the

noiseless setting. Instead, we can check the (r + 1)th

singular value of M0
!i
, which we will denote as �r+1.

If �r+1 is above the noise level, it is likely that at
least one entry in M0

!i
is grossly corrupted. On the

other hand, if �r+1 is within the noise level, it is likely
that M0

!i
has no grossly corrupted entries, whence we

can use the subspace spanned by the r leading singular

vectors of M0
!i

as an estimator of U!i . Unfortunately,
since M0

!i
only has r + 1 rows and columns, the sin-

gular values and vectors of M0
!i

will have a large vari-
ance. This means that �r+1 will be above the noise
level for many uncorrupted matrices M0

!i
, and below

the noise level for many corrupted ones. As a result,
we could miss good estimators and use bad ones. Fur-
thermore, even if M0

!i
is uncorrupted, the subspace

spanned by its r leading singular vectors could be far
from U!i . As a result, our estimate of U could be very
inaccurate.

But this can be improved if we use a few more entries
in M so that the noise cancels out. To this end, let i

be a subset of {1, 2, . . . , d} with k > r elements con-
taining !i, and let M0

i
2 Rk⇥k be a matrix formed

with k columns of Mi . Define Vi 2 Rk⇥r as the
matrix formed with the r leading left singular vectors
of M0

i
. Under mild, typical assumptions (e.g., finite

second and fourth moments), if Mi is uncorrupted,
as k grows, the (r + 1)th singular value of M0

i
con-

verges to the noise level, and span{Vi} converges to
Ui . In other words, the larger k, the better estimates
of U we will obtain. On the other hand, as k grows, it
is more likely that at least one entry in M0

i
is grossly

corrupted (because M0
i

will have more entries, each
of which may be grossly corrupted), contrary to what
we want. We thus want k to be large enough such that
M0

i
can be used to accurately estimate Ui , but not

so large that there are no matrices M0
i

with uncor-
rupted entries. The fraction of corrupted entries in M
determines how large k can be. Figure 3 in Section
6 shows the feasible range of k as a function of the
fraction of corrupted entries in M.

Since M0
i

has k > r rows, if M0
i

is believed to be un-
corrupted, we can use it to estimate several projections
of U (as many as k�r). To see this, let �i be a subset
of !i with exactly r elements. Let j 2 i\�i, and let
!ij := �i [ j. Observe that, V!ij 2 R(r+1)⇥r gives
an estimate of U!ij through span{V!ij}. As before,
we will store this information in the matrix A. More
precisely, for each j 2 i\�i, we will take a nonzero
vector a!ij 2 kerVT

!ij
, and we will construct the vec-

tor aij 2 Rd with the entries of a!ij in the locations
of !ij . This time, A will be the matrix with the aij ’s
as columns. Since !i = !ij for some j, Lemma 1
suggests that the projections encoded in A should be
enough to reconstruct U. We can thus use the matrix
Û 2 Rd⇥r formed with the last r left singular vectors
of A (which approximates kerAT) to estimate of U .

Similarly, in the second part of r2pca we can estimate
the coe�cients of L using k entries of each column in
M. More precisely, for each column m in M, we can
iteratively select a set  indexing k random entries in
m until we find a  such that m is close to span{Û}
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(within the noise level). If this is the case, it is likely
that the entries in m are uncorrupted, and that ✓̂ =
(ÛT

Û)�1ÛT
m is a good estimate of the coe�cient

we are looking for. We repeat this process to obtain
an estimate ⇥̂ of ⇥. Finally, our estimate of L is given
by Û⇥̂, which in turn gives an estimate of S through
(1). The noisy variant of r2pca is summarized in
Algorithm 2 in Appendix B.

6 Experiments

In this section we present a series of experiments to
study the performance of r2pca and compare it with
the augmented Lagrange multiplier method for ro-
bust PCA(RPCA-ALM) [18, 19]. We found, consistent
with previous reports [9, 16, 20], that the RPCA-ALM
algorithm typically performed as well or better than
several others (e.g., singular value thresholding [7], al-
ternating direction method [21], accelerated proximal
gradient [22] and dual method [22]).

Synthetic Data. We will first use simulations to
study the performance of r2pca in the noiseless set-
ting, as a function of the percentage of grossly cor-
rupted entries per row p, and the coherence of L,
defined as µ := d

r max1id kPUeik22, where PU de-

notes the projection operator onto U , and ei the ith

canonical vector in Rd. Intuitively, µ parametrizes how
aligned is U with respect to the canonical axes. In all
our experiments, L was a d ⇥ n, rank-r matrix, with
d = n = 100 and r = 5.

In our simulations, we first generated a d⇥ r random
matrix U with N(0, 1) i.i.d. entries to use as basis of
U . To obtain matrices with a specific coherence pa-
rameter, we simply increased the magnitude of a few
entries in U, until it had the desired coherence. We
then generated an r ⇥ (r + 1)(d � r) random matrix
⇥, also with N(0, 1) i.i.d. entries, to use as coe�cient
vectors. With this, we constructed L = U⇥. Next, we
generated a d⇥ r matrix S with p percent of nonzero
entries per row, selected uniformly at random. The
nonzero entries in S are i.i.d. N(0, 10). Finally, we ob-
tained M as in (1). We repeated this experiment 100
times for each pair (p, µ), and recorded the fraction
of trials that L was exactly recovered. We declared a
success if the normalized error (using Frobenius norm)
was below 10�10 after at most 103 seconds. The re-
sults are summarized in Figure 2. As predicted by our
theory, r2pca performs perfectly as long as S is suf-
ficiently sparse, regardless of coherence. In contrast,
other approaches rely on low coherence (e.g., [5–12]),
and one can see that their performance quickly decays
as coherence increases. On the other hand, as p grows,
and S becomes less sparse, the likelihood of finding un-
corrupted blocks in M quickly decays. In turn, it takes

r2pca (this paper) RPCA-ALM

Figure 2: Transition diagrams of the success rate (top
row) and time (bottom row) for exact recovery of L as a
function of the percentage of grossly corrupted entries per
row p, and the coherence parameter µ 2 [1, d/r]. The color
of each (p, µ) pixel indicates the average over 100 trials (the
lighter the better). Notice that as p grows, so does the time
required to find projections, up to the point where r2pca

is unable to find enough projections to reconstruct U . The-
orem 1 shows that if M has at most p = 7.9% corrupted
entries per row (dashed line), then r2pca can exactly re-
cover L. We point out that our results hold regardless of
coherence, as opposed to other algorithms, whose perfor-
mance quickly decays as coherence increases.

more time to identify projections of U , up to the point
where r2pca is unable to identify enough projections
to reconstruct U . Our astronomy and real-data ex-
periments below illustrate the importance of coherent
matrices and non uniformly distributed errors.

In Section 5 we presented a noisy variant of r2pca

that iteratively selects k rows of k columns of M to
estimate U and ⇥. Its performance depends on the
choice of k. If k is too small, our estimates could be
very inaccurate. If k is too large, M may not contain
enough k⇥k uncorrupted blocks to obtain an estimate.
The feasible range of k depends on the percentage of
corrupted entries p. In our next experiment we study
the performance of the noisy variant of r2pca as a
function of p and k. To obtain a noisy M according
to (2), we generated matrices L and S as described
before, and then added a d ⇥ n random matrix W
with N(0,�2) i.i.d. entries. To measure accuracy we
recorded the error of the estimated L after at most
103 seconds (using normalized Frobenius norm). We
repeated this experiment 100 times for each pair (p, k)
with � = 10�3 fixed. The results, summarized in Fig-
ure 3, show the feasible range of k.

In our next simulation, we selected k = 2r, known from
our previous experiment to produce reasonable results
for a wide range of p, and used it to test the perfor-
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Figure 3: Transition diagram of the estimation error of
L (using the noisy variant of r2pca) as a function of the
percentage of grossly corrupted entries per row p and the
parameter k, with noise level � = 10�3. The color of each
(p, k) pixel indicates the average over 100 trials (the lighter
the better). If k is too small, our estimate could be very
inaccurate. If k is too large, it is less likely to find k ⇥ k

uncorrupted matrices to obtain an estimate. This figure
shows the feasible range of k (white region, where r2pca

can recover L within the noise level), which depends on the
percentage of corrupted entries p.

mance of r2pca as a function of noise and coherence,
with fixed p = 5%. We repeated this experiment 100
times for each pair (�, µ). The results, summarized in
Figure 4, show that r2pca can consistently estimate
L within the noise level, as long as S is su�ciently
sparse, regardless of coherence (as opposed to other
algorithms).

Astronomy and Correlated Errors. In a video,
the background can be modeled as approximately low-
rank, and the foreground objects (like cars or people)
can be modeled as sparse errors (as they typically take
only a fraction of each frame). So the sparse plus low-
rank model is a natural fit for this problem. Here M
is the matrix containing the vectorized images in the
video, and the goal is to decompose it into the sparse
foreground S and the low-rank background L. We now

r2pca (this paper) RPCA-ALM

Figure 4: Transition diagram of the estimation error of L as
a function of the noise level � and the coherence parameter
µ, with p = 5% grossly corrupted entries. The color of each
(�, µ) pixel indicates the average error over 100 trials (the
lighter the better). This shows that r2pca can consistently
estimate L within the noise level, as long as S is su�ciently
sparse, regardless of coherence. Other algorithms can also
estimate L within the noise level, but only for a restricted
range of matrices with bounded coherence.

Figure 5: Left: One frame of a simulation of an astro-
nomical video, composed of a background formed with ⌫

twinkling stars and ⇢ moving objects. Each object (block)
moves in a random direction at a random speed over the
video. Right: Each frame is vectorized to form the matrix
M, which is shown negated and transposed for display pur-
poses (i.e., we see 1 �M

T). The vertical lines correspond
to the pixels of the stars. All other points correspond to
the moving objects. These points are highly correlated, as
is the location of an object in consecutive frames.

present an experiment where highly coherent matri-
ces and highly correlated sparse errors arise in a very
natural way: background segmentation of astronomy
videos.

In this experiment we simulated astronomy videos
with a background with ⌫ twinkling stars and ⇢ mov-
ing objects (see Figure 5). To this end we first gen-
erated a d ⇥ r matrix U, and an r ⇥ N matrix ⇥,
with d = 90 · 120 = 10800, r = 5 and N = 100. We
selected ⌫ rows in U uniformly at random, and popu-
lated them with the absolute values of i.i.d. N(0, 100)
random variables. These entries represent the twin-
kling stars. All other entries in U were populated with
the absolute values of i.d.d. N(0, 1) random variables.
Similarly, we populated ⇥ with the absolute value of
i.d.d. N(0, 1) random variables. Next we constructed
L = U⇥, and bounded its entries by 1 (i.e., we divided
L by its maximum value). Each column of L repre-
sents the vectorized background of a 90⇥120 frame of
a video.

For each of the ⇢moving objects, we selected uniformly
at random: one starting point on the edge of a 90⇥120
frame, one starting time between {1, 2, . . . , 100}, one
direction, and one speed ranging from 1 to 5 pixels per
frame. With this information, we created ⇢ objects
moving across a dark background over 100 frames.
Each moving object consisted of an r ⇥ r block with
N(0, 1) entries. We vectorized the frames to obtain a
10800 ⇥ 100 matrix, whose entries we normalized be-
tween 0 and 1 to obtain S. Finally, we replaced the
zero entries in S with the corresponding entries in L
to obtain M. This way, all entries in M are between
0 and 1, such that the brightest star shines at a maxi-
mum intensity of 1, and so does the brightest pixel of
all moving objects.

We repeated this experiment 100 times for each pair
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r2pca (this paper) RPCA-ALM

Figure 6: Transition diagrams of the success rate (top
row) and time (bottom row) for exact recovery of L as a
function of the number of moving objects ⇢ and the num-
ber of twinkling stars ⌫ for the experiment described in
Figure 5. The larger ⇢, the larger proportion of corrupted
entries p. The larger ⌫, the lower coherence µ. The color
of each (⇢, ⌫) pixel indicates the average over 100 trials
(the lighter the better). The results are consistent with
the experiments in Figure 2.

(⌫, ⇢). The results, summarized in Figure 6, show that
r2pca has almost perfect performance handling highly
coherent matrices and highly correlated errors (as op-
posed to other algorithms).

Real Data: Microscopy and Surveillance. Fi-
nally, we evaluate the background segmentation per-
formance of r2pca on real data. To this end we used
several microscopy videos from the Internet [25], and
videos from two widely used datasets: the Wallflower
dataset [23] and the I2R dataset [24]. Figure 7 shows

several examples, with more in Appendix C.

We point out that many cases of the Wallflower and
the I2R datasets have low coherence. In these cases,
the performance of r2pca and RPCA-ALM is very
similar. Consistent with our theory, the advantage of
r2pca becomes more evident in highly coherent cases,
like our microscopy and astronomy experiments.

Remark 2. Notice that in all of our background ex-

periments, r2pca can handle a much larger fraction

of gross errors than the allowed by Theorem 1. This

is because Theorem 1 holds even under the worst-case

scenario where the errors are purposely located to com-

plicate success. In many applications, as in back-

ground segmentation, errors are often grouped, which

tends to leave more uncorrupted blocks. This facilitates

r2pca’s success.

7 Conclusions

In this paper we present r2pca, a novel algorithm for
robust PCA. We show that under reasonable assump-
tions, r2pca will succeed with probability 1 in linear
time, in lieu of assumptions on coherence or the distri-
bution of the sparse errors. The algorithm is paralleliz-
able and can be used in large scale settings where the
dataset is too large to even store in memory. Our ex-
periments show that r2pca consistently outperforms
state-of-the-art methods both in terms of speed and
accuracy in a broad range of settings, particularly on
high coherence cases.

Original Frame
r2pca (this paper) RPCA-ALM

Background Foreground Background Foreground

Figure 7: Sparse (foreground) plus low-rank (background) decomposition of several microscopy videos [25] using r2pca

and RPCA-ALM [18, 19]. Notice that the background obtained by RPCA-ALM contains foreground objects, while the
background obtained by r2pca is much cleaner. This is because it these videos the background is mostly dark with a few
bright regions (which implies a highly coherent subspace) and the location of the errors is highly correlated (the location
of an object in consecutive frames is very similar). In contrast to other optimization methods [5–12, 18, 19], we make no
assumptions about coherence or the distribution of the sparse errors, and so this does not a↵ect our results.
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A Proof of Theorem 1

In this section we give the proof of Theorem 1. Recall
that ⌦ is a d⇥(d�r) matrix, and that !i ⇢ {1, . . . , d}
indexes the r + 1 nonzero entries in the ith column of
⌦. Each !i indicates the coordinates of a projection
of U that we aim to identify. Since r2pca selects a
matrix⌦ satisfying (i), Lemma 1 implies that if we find
the projections of U onto the coordinates indicated in
⌦, then we can reconstruct U from these projections.
Hence we need to show that under the assumptions
of Theorem 1, r2pca can find the projections of U
onto the !i’s in ⌦. To this end, we will show that
r2pca can potentially find the projection onto any

! ⇢ {1, 2, . . . , d} with exactly r + 1 elements.

So let ! be given. As discussed in Section 2, finding
the projection U! equates to finding r+1 uncorrupted
columns in M!. So r2pca can potentially find U! as
long as there are r + 1 uncorrupted columns in M!.
Since M! only contains r + 1 rows, A4 implies that
there are at most (n�r)(r+1)

2(r+1)↵ corrupted entries in M!.
In the worst-case scenario, each of these corrupted en-
tries is located in a di↵erent column. It follows that
M! has at most n�r

2(r+1)↵�1 corrupted columns. Then

P
�
ith column in M0

! is uncorrupted
�

� 1� 1

2(r + 1)↵�1
,

which corresponds to the case where the first r columns
in M0

! are uncorrupted, whence the ratio of uncor-
rupted columns ((n � r) � n�r

2(r+1)↵�1 ) versus total re-

maining columns (n� r) is smallest. It follows that

P
�
all columns in M0

! are uncorrupted
�

�
✓
1� 1

2(r + 1)↵�1

◆r+1

=

✓
1�

1/2

(r + 1)↵�1

◆(r+1)1+(↵�1)�(↵�1)

=

✓
1�

1/2

(r + 1)↵�1

◆(r+1)(↵�1)(r+1)2�↵

=

 ✓
1�

1/2

(r + 1)↵�1

◆(r+1)(↵�1)!(r+1)2�↵

� (1/2)(r+1)2�↵

. (1)

This implies that on expectation, r2pca will require
at most 2(r+1)2�↵

iterations to find a set of r+1 uncor-
rupted columns in M!. This is true for every !. Since
r2pca only searches over the !i’s in ⌦, and since ⌦
has exactly d� r columns, it follows that on expecta-
tion, r2pca will require at most (d� r)2(r+1)2�↵

iter-
ations to find the projections of U onto the canonical
coordinates indicated by⌦. Since⌦ satisfies condition
(i), we know by Lemma 1 that U is given by kerAT.

Now that U is known, let us show that r2pca can re-
cover L. Let U be an arbitrary basis of U . We will
show that r2pca can determine the matrix ⇥ contain-
ing the coe�cients of L in this basis, such that in the
end, L will be given by U⇥. To this end, let m be
a column in M. Observe that r2pca can potentially
find the coe�cients of the corresponding column of L
as long as there is a set ! ⇢ {1, 2, . . . , d} with r+1 el-
ements such that m! 2 U!. A1-A3 imply that with
probability 1, this will be the case if and only there
are at least r + 1 uncorrupted entries in m. By A4,
there are at most d�r

2(r+1)↵�1 corrupted entries in m. It
follows that

P
�
ith entry in m! is uncorrupted

�

� 1� 1

2(r + 1)↵�1
,

which corresponds to the case where the first r entries
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in m! are uncorrupted, whence the ratio of uncor-
rupted entries ((d � r) � d�r

2(r+1)↵�1 ) versus total re-

maining entries (d� r) is smallest. It follows that

P
�
all entries in m! are uncorrupted

�

�
✓
1� 1

2(r + 1)↵�1

◆r+1

� (1/2)(r+1)2�↵

,

where the last inequality follows by the same arith-
metic manipulations as in (1). This implies that on

expectation, r2pca will require at most 2(r+1)2�↵

it-
erations to find a set of r + 1 uncorrupted entries in
m. This is true for every m. Since M has n columns,
it follows that on expectation, r2pca will require at
most n2(r+1)2�↵

iterations to recover L. Once L is
known, S can be trivially recovered as S = M � L.
This shows that on expectation, r2pca will require at
most (d + n � r)2(r+1)2�↵

iterations to recover U , L
and S from M. ⇤

B Noisy Variant

In Section 5 we described a noisy variant of r2pca.
This variant iteratively selects matrices M0

 2 Rk⇥k

formed with k rows of k columns of M, and verifies the
(r+1)th singular value of M0

. If this singular value is
within the noise level, Algorithm 1 will consider M0



uncorrupted, and use it to estimate projections of U .
Otherwise Algorithm 1 will discard M0

 and keep look-
ing. This process is repeated until there are enough
projections to recover U . Once U is estimated, Algo-
rithm 1 proceeds to estimate the coe�cients of L using
k entries per column of M. If these entries agree with
the estimated subspace U , they will be considered un-
corrupted, and used to estimate the coe�cient of the
corresponding column of L. Otherwise, Algorithm 1
will discard these entries, and select an other k. This
process is repeated until we recover all the coe�cients
of L. This noisy variant of r2pca is summarized in
Algorithm 1.
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Algorithm 1: Random Robust PCA
(r2pca, noisy variant)

1 Input: Data M 2 Rd⇥n, rank r,

2 matrix ⌦ 2 {0, 1}d⇥(d�r) satisfying
(i),

3 parameter k 2 N.
4 PART 1: Estimate U
5 for i = 1, 2, . . . , d� r do
6 !i = indices of the r + 1 nonzero

rows of
7 the ith column in ⌦.
8 i = subset of {1, . . . , d} containing

!i

9 and k � r + 1 other rows
selected randomly. repeat

10 M0
i

2 Rk⇥k = k columns of Mi ,
11 selected randomly.
12 until (r + 1)th singular value of M0

i

13 is within the noise level.
14 Vi 2 Rk⇥r = r leading singular

vectors
15 of M0

i
.

16 �i = subset of i with exactly r
elements,

17 selected randomly.
18 for each j 2 i\�i do
19 !ij := �i [ j.
20 a!ij 2 Rr+1 = nonzero vector
21 in kerVT

!ij
.

22 aij 2 Rd = vector with a!ij in the
23 locations of !ij , and

zeros
24 elsewhere.
25 Insert aij into A.

26 Û 2 Rd⇥r = basis of kerAT.

27 PART 2: Estimate ⇥
28 for each column m in M do
29 repeat
30  = subset of {1, . . . , d} with k
31 elements, selected randomly.

32 until m is close to span{Û}
33 (within the noise level).

34 ✓̂ = (ÛT
Û)�1ÛT

m.

35 Insert ✓̂ into ⇥̂.

36 Output: Û, L̂ = Û⇥̂, Ŝ = M� L̂.

C Additional Results

Microscopy Segmentation In Section 6 we gave
three examples of the background segmentation that
we obtained for three microscopy videos from the In-
ternet. Figure 1 shows more results.

Wallflower and I2R Datasets. To complement the
real data experiments in Section 6, we also ran r2pca

and RPCA-ALM on the Wallflower [23] and the I2R
[24] datasets. The results are summarized in Figure 2.
We point out that many cases of the Wallflower and
the I2R datasets have low coherence. In these cases,
the performance of r2pca and RPCA-ALM is very
similar. Consistent with our theory, the advantage of
r2pca becomes more evident in highly coherent cases,
like our microscopy and astronomy experiments.
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Original Frame
r2pca (this paper) RPCA-ALM

Background Foreground Background Foreground

Figure 1: Sparse (foreground) plus low-rank (background) decomposition of some video frames from several microscopy

videos from the Internet [25] using r2pca and RPCA-ALM [18,19]. Notice that the background obtained by RPCA-ALM

contains foreground objects, while the background obtained by r2pca is much cleaner. This is because it these videos

the background is mostly dark with a few bright regions (which implies a highly coherent subspace) and the location

of the errors is highly correlated (the location of an object in consecutive frames is very similar). In contrast to other

optimization methods [5-12,18,19], we make no assumptions about coherence or the distribution of the sparse errors, and

so this does not a↵ect our results.
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Original Frame
r2pca (this paper) RPCA-ALM

Background Foreground Background Foreground

Figure 2: Sparse (foreground) plus low-rank (background) decomposition of some video frames from the Wallflower [23]

and I2R [24] datasets using r2pca and RPCA-ALM [18,19].


	Introduction
	Model and Main Results
	Algorithm
	More about our Assumptions
	Handling Noise
	Experiments
	Conclusions

