
A Simpler Approach to Low-Rank Tensor
Canonical Polyadic Decomposition

Daniel L. Pimentel-Alarcón
University of Wisconsin-Madison

Abstract— In this paper we present a simple and efficient
method to compute the canonical polyadic decomposition (CPD)
of generic low-rank tensors using elementary linear algebra.
The key insight is that all the columns in a low-rank tensor lie
in a low-dimensional subspace, and that the coefficients of the
columns in each slice with respect to the right basis are scaled
copies of one an other. The basis, together with the coefficients
of a few carefully selected columns determine the CPD. The
computational complexity of our method scales linearly in the
order and the rank of the tensor, and at most quadratically
in its largest dimension. Furthermore, our approach can be
easily adapted to noisy settings. We complement our theoretical
analysis with experiments that support our findings.

I. INTRODUCTION

The canonical polyadic decomposition (CPD) problem
consists on writing a tensor as a minimal sum of rank-1
tensors [1]–[3]. This is ubiquitous in many modern applica-
tions of chemical sciences, data analysis, signal processing,
chemometrics and psychometrics, to name a few [4]–[9]. Ex-
isting methods that compute the CPD range from alternating
minimization [2], [10] to simultaneous diagonalization [11]–
[13], line search [14] and generalized eigenvalue decompo-
sition [15]–[17], among others [18]–[20].

In this paper we present a simple and efficient method to
compute the CPD of generic low-rank tensors using elemen-
tary linear algebra. The key idea behind our approach is that
all the columns in a low-rank tensor lie in a low-dimensional
subspace, and that the coefficients of the columns in each
slice with respect to the right basis are scaled copies of
one an other. So one only needs to compute a few of
these coefficients to determine the whole tensor. The basis,
together with the coefficients of a few carefully selected
columns determine the CPD. We show that the computational
complexity of our method scales linearly in the order and
the rank of the tensor, and at most quadratically in its largest
dimension. Furthermore, our approach can be easily extended
to noisy settings. We complement our theoretical analysis
with experiments that support our findings.

Organization of the paper

In Section II we formally state the CPD problem, our CPD
algorithm, and our main result, showing that our method will
yield the CPD of almost every low-rank tensor. In Section
III we study the computational complexity of this algorithm.
In Section IV we explain how to easily extend our results to
noisy settings. In Section V we present synthetic experiments
that support our theoretical results.

Notation

When dealing with tensors, notation can easily get out
of hand. To avoid clutter and confusion, we will use the
following notations.
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Scalar K, R ✓ ✓ ✓
Index i, j, k, r ✓ ✓ ✓
Vector u ✓ ✓ ✓
Matrix U ✓ ✓ ✓
Tensor X ✓ ✓ ✓
Entry ui ✓ ✓ ✓

We will also use [⋅] as shorthand for {1,2, . . . , ⋅}. For
example, [K] is shorthand for {1,2, . . . ,K}. Throughout the
document, k will be an index in [K] and r will be an index
in [R].

II. MODEL AND MAIN RESULTS

Let X be a K-order, rank-R tensor of dimensions D1 ≥
D2 ≥ ⋯ ≥DK . By definition, X can be written as

X =
R

∑
r=1

K

⊗
k=1

ukr (1)

for some {ukr}K,R
k,r=1, where ukr ∈ RDk for every k ∈ [K]

and r ∈ [R]. Our goal is to recover {ukr}K,R
k,r=1 from X (up

to scaling factors). This is known as the canonical polyadic
decomposition (CPD) of X. See Figure 1 for some intuition.

Throughout the paper, we will assume that

A1 For each k and r, ukr is drawn independently
according to an absolutely continuous distribution
with respect to the Lebesgue measure on RDk .

A2 K > 2 and R ≤D2.

A1 essentially requires that X is a generic rank-R tensor.
Intuitively, a rank-R tensor randomly selected with respect
to a density will satisfy A1 with probability 1. This is
similar or equivalent to other standard assumptions from the
literature [8], [10]–[13], [21]–[25]. See Figure 2 to build
some intuition. A2 essentially requires that X is a tensor
(as opposed to a vector, or a matrix), and that at least two
of its dimensions are as large as R.



Fig. 1: A rank-R tensor X can be written as the sum of R rank-1 tensors. In this figure, each rank-1 tensor is given by u1r
⊗u2r

⊗u3r .

The main contribution of the paper is a simple and efficient
method to compute the CPD of generic low-rank tensors
using elementary linear algebra (Algorithm 1 below). Let
Uk ∶= [uk1 uk2 ⋯ ukR] ∈ RDk×R. The key insight is that
under A1-A2, all the columns in X lie in the R-dimensional
subspace spanned by U1, and that the coefficients of the
slices of X with respect to U1 are copies of one an other,
scaled by the values in U2,U3, . . . ,UK . So one only needs
a few of these coefficients to determine U2,U3, . . . ,UK (up
to scaling factors). With this in mind, we first find a basis
Û1 containing scaled copies of the columns in U1. Next, we
determine the coefficients of a few carefully selected columns
in X with respect to this basis. These coefficients determine
scaled copies of U2,U3, . . . ,UK . Finally, we determine
scaling factors to obtain the desired CPD.

More precisely, let Xkr be the k-order, rank-1 tensor given
by u1r ⊗ u2r ⊗ ⋯ ⊗ ukr, and let Xk be the k-order, rank-
R tensor given by ∑R

r=1X
kr. See Figure 3 to build some

intuition. It is easy to see that XK = X.
Next notice that X2r contains D2 copies of X1r = u1r,

scaled by the entries in u2r. Similarly, X3r contains D3

copies of X2r, scaled by the entries in u3r. Equivalently,
X3r contains D2D3 copies of u1r, each scaled by the
product of a combination of the entries in u2r and u3r.
Proceeding iteratively, we see that Xkr contains Dk copies
of X(k−1)r, scaled by the combinations of the entries in ukr.
Equivalently, Xkr contains D2D3⋯Dk copies of u1r, each
scaled by the product of a combination of the entries in
u2r,u3r, . . . ,ukr.

This implies that XKr contains D2D3⋯DK scaled copies
of u1r. Since X = XK = ∑R

r=1X
Kr, it follows that X

Fig. 2: Each K-order, rank-R tensor X is determined by a set of
vectors {ukr

}
K,R
k,r=1. In the left, these vectors are in general position,

that is, each ukr is drawn according to an absolutely continuous
distribution with respect to the Lebesgue measure on RDk . For
example, according to a gaussian distribution. In this case, the
probability that the ukr’s are as in the right, where some ukr’s
are perfectly aligned with others, is zero. Our results hold for all
low-rank tensors, except for a set of measure zero of pathological
cases as in the right.

contains D2D3⋯DK linear combinations of the columns in
U1. Equivalently, all the columns in X lie in the subspace
spanned by U1.

We will now show how to recover scaled copies of the
columns in U1. For any i ∈ [D3], define the matrix X2i ∈
RD1×D2 as

X2i ∶=
R

∑
r=1

(u1r ⊗ u2r)u3ri (u4r1 ⋯ uKr
1 ) = U1(U2Di)T,

where Di ∈ RR×R is the diagonal matrix with
{u3ri ∏K

k=4 u
kr
1 }Rr=1 as diagonal entries. Intuitively, X2i is the

matrix of X in dimensions D1 and D2, located at position
{i,1,1, . . . ,1} in dimensions D3,D4, . . . ,DK . See Figure 4
for some intuition.

The matrix Θ2i ∶= (U2Di)T ∈ RR×D2 contains the
coefficients of X2i with respect to the basis U1. Notice that
for any j ∈ [D3], the rows of Θ2j are scaled copies of the
rows in Θ2i. In other words, the coefficients Θ2j of the
columns in X2j (with respect to the basis U1) are scaled
copies of the coefficients Θ2i of the columns in X2i (with
respect to the basis U1).

Under A2, D1 ≥ R, which together with A1 implies that
any R columns of X2i will be linearly independent with
probability 1. By A2, D2 ≥ R, whence X2i has at least R
columns. We can thus set Ũ1 to be the D1×R matrix formed
with the first R columns of X2i, such that Ũ1 spans the
same subspace as U1. Now take X2j , with j ≠ i. It follows
that the columns in X2j lie in the subspace spanned by Ũ1.
We can obtain the coefficients of X2j in this basis, given
by Θ̃2j = (Ũ1TŨ1)−1Ũ1TX2j , such that X2j = Ũ1Θ̃2j . In
general, Ũ1 ≠ U1, and so the coefficients Θ̃2j of the columns
in X2j (with respect to the basis Ũ1) are not scaled copies
of the coefficients Θ̃2i of the columns in X2i (with respect
to the basis Ũ1). In other words, the rows of Θ̃2j will not
be scaled copies of the rows in Θ̃2i.

Fig. 3: Xkr is the k-order, rank-1 tensor given by u1r
⊗u2r

⊗⋯⊗

ukr . Xk is the k-order, rank-R tensor given by ∑R
r=1X

kr . Notice
that XK

= X.



Fig. 4: Intuitively, X2i is the ith matrix of X in dimensions D1 and D2.

Recall that for any full-rank matrix Γ ∈ RR×R, Ũ1Γ is also
a basis of the subspace spanned by Ũ1. The coefficients of
X2i with respect to the basis Ũ1Γ are given by Γ−1Θ̃2i.
Since Ũ1 spans the same subspace as U1, and the coeffi-
cients of X2j with respect to U1 are scaled copies of the
coefficients of X2i with respect to U1, we know that there
exists a change of basis Γ such that the rows of Γ−1Θ̃2j are
scaled copies of the rows in Γ−1Θ̃2i. More precisely, there
exists a full-rank matrix Γ ∈ RR×R and a diagonal matrix
Λ ∈ RR×R, such that

Γ−1Θ̃2j = ΛΓ−1Θ̃2i. (2)

Let Θ̃2i
R denote the R×R matrix with the first R columns of

Θ̃2i, and similarly for Θ̃2j
R . Since we defined Ũ1 to be the

first R columns of X2i, it follows that Θ̃2i
R is the identity

matrix I. Restricting (2) to these first R columns, we have
that

Γ−1Θ̃2j
R = ΛΓ−1. (3)

Left-multiplying by Γ, we can rewrite this as Θ̃2j
R = ΓΛΓ−1,

and from this we can see that (Γ,Λ) is the eigenvalue
decomposition of Θ̃2j

R . It follows that the columns in Û1 ∶=
Ũ1Γ are scaled copies of the columns in U1.

We will now show that for k > 1 we can also recover scaled
copies of Uk. For any k > 1, define the matrix Xk ∈ RD1×Dk

as

Xk ∶ =
R

∑
r=1

(u1r ⊗ ukr) (u2r1 ⋯ u
(k−1)r
1 ⋅ u(k+1)r2 ⋯ uKr

1 )

= U1(UkDk)T,

where Dk ∈ RR×R is the diagonal matrix with
{u2r1 ⋯ u

(k−1)r
1 ⋅ u(k+1)r2 ⋯ uKr

1 }Rr=1 as diagonal entries.
Intuitively, Xk is the face of X in dimensions D1 and Dk.

Or more precisely, Xk is the matrix of X in dimensions
D1 and Dk, located at position {1,1, . . . ,1} in dimensions
D2,D3, . . . ,DK . See Figure 5 for some intuition. In partic-
ular, X2 is equal to X21, as defined before.

Let Ûk ∈ RDk×R be the matrix containing the coefficients
of Xk with respect to the basis Û1, such that Xk = Û1ÛkT.
That is, ÛkT ∶= (Û1TÛ1)−1Û1TXk.

Since the columns in Û1 are scaled copies of the columns
in U1, it follows that the columns in Ûk are scaled copies of
the columns in Uk. To see this, observe that if Û1 = U1ΛΠ
for some diagonal matrix Λ ∈ RR×R and some permutation
matrix Π ∈ RR×R, then

Xk = U1DkTUkT = U1(ΛΠ)(ΛΠ)−1DkTUkT

= (U1ΛΠ)(Π−1Λ−1DkTUkT) = Û1(UkDkΛ−1Π)T.

Since Ûk is defined as the coefficient matrix of Xk with
respect to the basis Û1, it follows that Ûk must be equal
to UkDkΛ−1Π. This implies that the columns in Ûk are
scaled copies of the columns in Uk. Equivalently, the vectors
in {ûkr}Rr=1 are scaled copies of the vectors in {ukr}Rr=1.

At this point, we know that the elements in {X̂Kr ∶=
⊗K

k=1 ûkr}Rr=1 are scaled copies of the elements in {XKr =
⊗K

k=1 ukr}Rr=1. It follows that

X =
R

∑
r=1

XKr =
R

∑
r=1

λrX̂
Kr.

for some constants {λr}Rr=1. In other words, we have deter-
mined the rank-1 components of X. It just remains to obtain
their weights. This can be easily done using a single vector
in X. To see this, let x ∈ RD1 be the column in the first
corner of X. More precisely, x is the first column in X2

(which is actually also the first column in X3,X4, . . . ,XK).
See Figure 5 for some intuition.

Fig. 5: Intuitively, Xk is the face of X in dimensions D1 and Dk. x ∈ RD1 is the column in the first corner of X.



Algorithm 1: Low-Rank CPD

1 Input: K-order, rank-R tensor X ∈ RD1×D2×⋯×DK .
2 PART 1: Obtain Û1.
3 Ũ1 = matrix with the first R columns of X21

(see Figure 4).
4 X22

R = matrix with the first R columns of X22.
5 Θ̃22

R = coefficients of X22
R w.r.t. Ũ1

= (Ũ1TŨ1)−1Ũ1TX22
R .

6 Γ = eigenvectors of Θ̃22
R .

7 Û1 = Ũ1Γ.

8 PART 2: Obtain {Ûk}Kk=2.
9 Xk = face of X in dimensions D1 and Dk

(see Figure 5).
10 Ûk = coefficients of Xk w.r.t. Û1

= (Û1TÛ1)−1Û1TXk.
11 PART 3: Obtain scaling factors {λr}Rr=1.
12 x = first column in X (see Figure 5).
13 θ̂ = coefficients of x w.r.t. Û1

= (Û1TÛ1)−1Û1Tx.
14 λr = θ̂r/∏K

k=2 û
kr
1 .

15 û1r = λrû1r.

16 Output: {ûkr}K,R
k,r=1.

Let θ̂ = [θ̂1 θ̂2 ⋯ θ̂R]T be the vector with the coefficients
of x with respect to the basis Û1. Then

x =
R

∑
r=1

θ̂rû
1r.

On the other hand, we want to find constants {λr}Rr=1 such
that

x =
R

∑
r=1

λr (û1r ⋅
K

∏
k=2

ûkr1 ) .

Putting the last two equations together, we have that λr =
θ̂r/∏K

k=2 û
kr
1 . We thus conclude that

X =
R

∑
r=1

λr
K

⊗
k=1

ûkr,

as desired. Notice that each scaling factor λr can be incor-
porated in one of the columns of Û1 (or any other Ûk) to
obtain a CPD of the form in (1), i.e., without scaling factors.

We have thus shown the following theorem, which states
that the output of Algorithm 1 will yield the CPD of almost
every low-rank tensor.

Theorem 1. Let A1-A2 hold. Let {ûkr}K,R
k,r=1 be the

output of Algorithm 1. Then with probability 1,

X =
R

∑
r=1

K

⊗
k=1

ûkr.

III. COMPUTATIONAL COMPLEXITY

In this section we analyze the computational complexity of
Algorithm 1. In the first part, Algorithm 1 computes Û1. This
requires to compute several matrix multiplications, one ma-
trix inverse, and one eigenvalue decomposition (steps 5− 7).
Since Ũ1,X22

R ∈ RD1×R, using schoolbook matrix algebra,
the required operations have the following complexities:

Operation Description Complexity
Ũ1TŨ1

(R ×D1) by (D1 ×R) product O(R2D1)

(Ũ1TŨ1
)
−1

(R ×R) inverse O(R3
)

Ũ1TX22
R (R ×D1) by (D1 ×R) product O(R2D1)

Step 5 (R ×R) by (R ×R) product O(R3
)

Step 6 (R ×R) eigenvalue decomposition O(R3
)

Step 7 (D1 ×R) by (R ×R) product O(R2D1)

Since R ≤ D1, the computational complexity of the first
part of Algorithm 1 is upper bounded by O(R2D1).

In the second part, Algorithm 1 computes {Ûk}Kk=2. This
requires several matrix multiplications, and one matrix in-
verse. Since Û1 ∈ RD1×R and Xk ∈ RD1×Dk , the required
operations have the following complexities:

Operation Description Complexity
Û1TÛ1

(R ×D1) by (D1 ×R) product O(R2D1)

(Û1TÛ1
)
−1

(R ×R) inverse O(R3
)

Û1TXk
(R ×D1) by (D1 ×Dk) product O(RD1Dk)

Step 10 (R ×R) by (R ×Dk) product O(R2Dk)

Since step 10 is repeated K − 1 times, and D1 ≥ D2 ≥
⋯ ≥ DK , the computational complexity of the second part
of Algorithm 1 is upper bounded by O(KRD2

1).
In the third part, Algorithm 1 computes the scaling factors

{λr}Rr=1. This requires to compute θ̂ and some negligible
scalar operations. Computing θ̂ requires to compute Û1Tx,
and multiply it by (Û1TÛ1)−1, which was already computed
in the second part. It follows that the third part of Algorithm
1 has a computational complexity of O(RD). Putting every-
thing together, we obtain the following theorem.

Theorem 2. The computational complexity of Algorithm 1
is O(KRD2

1).

IV. HANDLING NOISE

In practice, measurements are hardly noiseless. So instead
of (1), we can model X as

X =
R

∑
r=1

K

⊗
k=1

ukr +W, (4)

where {ukr}K,R
k,r=1 are as before, and W is a noise tensor.

Fortunately, there is a straight forward way to adapt our
ideas to this setting. Notice that our first step is to use R
columns in X to obtain the basis Ũ1 that spans the same
subspace as U1 (see Section II and step 3). Instead, we
can use N ≥ R columns in X to obtain an estimate of this
subspace. Under reasonable assumptions on the noise (e.g.,
independence and finite fourth moment), the accuracy and
computational complexity of this procedure will depend on



Algorithm 2: Low-Rank CPD, noisy variant

1 Input: Noisy tensor X ∈ RD1×D2×⋯×DK ,
rank-R, parameter N ∈ N.

2 PART 1: Obtain Û1.
3 Ũ1 = R leading left-singular vectors of a matrix

with N ≥ R columns from X.
4 X21

R ,X
22
R = matrices with the first R columns

of X21 and X21 (see Figure 4).
5 Θ̃21

R , Θ̃
22
R = coefficients of X21

R and X22
R w.r.t. Ũ1.

6 Γ = eigenvectors of Θ̃22
R (Θ̃21

R )−1.
7 Û1 = Ũ1Γ.

8 PART 2: Same as in Algorithm 1.
9 PART 3: Same as in Algorithm 1.

10 Output: {ûkr}K,R
k,r=1.

the number of columns that we use. The more columns, the
higher precision, and the higher computational complexity.
Let X be the matrix formed with the N columns of X that
will be used to estimate the subspace spanned by U1. For
example, if we decide to use all the columns in X, then X
is equivalent to the unfolding of X in the first dimension.

This time we can take Ũ1 to be the matrix with the leading
left-singular vectors of X, as opposed to being the matrix
formed with the first R columns of X2i. Consequently, the
matrix Θ̃2i

R containing the coefficients of the first R columns
in X2i with respect to Ũ will no longer be the identity matrix
(as in the noiseless case), so instead of (3) we have that

Γ−1Θ̃2j
R (Θ̃2i

R)−1 = ΛΓ−1.

Left-multiplying by Γ, we obtain Θ̃2j
R (Θ̃2i

R)−1 = ΓΛΓ−1,
and from this we can see that this time, (Γ,Λ) is the
eigenvalue decomposition of Θ̃2j

R (Θ̃2i
R)−1. At this point, we

can use ŨΓ as an estimate of U1, and continue with the
rest of the procedure exactly as before. This is summarized
in Algorithm 2.

Notice that the main difference between Algorithms 1 and
2 lies in step 3. In Algorithm 1, step 3 simply requires to
access entries in X. In contrast, step 3 in Algorithm 2 requires
to compute the leading R singular vectors of a D1×N matrix,
which requires O(NRD1) operations. Since R ≤ N,D1, by
the same arguments as in Section III we conclude that the
first part of Algorithm 2 has a computational complexity of
O(NRD1), as opposed to the O(R2D1) complexity of the
first part of Algorithm 1. Since the rest of the procedure
is the same for Algorithms 1 and 2, we have the following
corollary.

Corollary 1. The computational complexity of Algorithm 2
is O(max{NRD1,KRD

2
1})

Corollary 1 implies that noise will only affect the compu-
tational complexity of our approach if we decide to use more
than KD1 columns in step 3 of Algorithm 2 to estimate the
subspace spanned by U1.

V. EXPERIMENTS

In this section we present a series of experiments to
support our theoretical findings.

Noiseless Setting

In our first set of experiments we will study the behavior
of Algorithm 1 as a function of K, R and D1,D2, . . . ,DK .
To keep things simple, we will set D1 = D2 = ⋯ = DK .
To generate K-order, rank-R tensors satisfying A1, we
first generated vectors {ukr}K,R

k,r=1 with N(0,1) i.i.d. entries,
where ukr ∈ RD1 for every k ∈ [K] and r ∈ [R]. We then
constructed X as in (1). In all our noiseless experiments,
Algorithm 1 was able to perfectly recover the CPD of X, as
stated in Theorem 1, and so on this first set of experiments,
we will only focus on the computation time.

In our first experiment we study the behavior of Algorithm
1 as a function of D1, with K = 4, and R = 10 fixed. For
each value of D1, we generated 100 tensors as described
before, ran Algorithm 1 to obtain its CPD, and recorded the
elapsed time in each trial. The results, summarized in Figure
6 show that, consistent with Theorem 2, the computational
complexity of Algorithm 1 grows quadratically in D1.

In our second experiment we study the behavior of Al-
gorithm 1 as a function of R. Since A2 requires R ≤ D2,
to allow a wider range of R we set K = 5 and D = 50.
For each value of R, we generated 100 tensors as described
before, ran Algorithm 1 to obtain its CPD, and recorded the
elapsed time in each trial. The results, summarized in Figure
7, show that, consistent with Theorem 2, the computational
complexity of Algorithm 1 grows linearly in R.

In our third experiment we will study the behavior of
Algorithm 1 as a function of K. Notice that explicitly storing
a tensor requires room for DK

1 values (exponential growth
in K). If D1 is large, as K grows one quickly runs out of
memory. So to be able to do this experiment, we will choose
Dk to be quite small. More precisely, we will set D1 = 3 and
R = 2 (as to satisfy A2). For each value of K, we generated

Fig. 6: Average time (over 100 trials) required by Algorithm 1
to compute the CPD of a K-order, rank-R tensor of dimensions
D1 ×D1 × ⋯ ×D1, as a function of D1, with K = 4 and R = 10
fixed. Notice that explicitly storing such tensor requires room for
DK

1 values (polynomial growth in D1). In contrast, storing the
CPD only requires room for KRD1 values (linear growth in D1).
As shown by Theorem 2, Algorithm 1 only requires O(KRD2

1)

operations to compute the CPD (quadratic growth in D1).



Fig. 7: Average time (over 100 trials) required by Algorithm 1
to compute the CPD of a K-order, rank-R tensor of dimensions
D1 ×D1 × ⋯ ×D1, as a function of R, with K = 4 and D1 = 50
fixed. Theorem 2 shows that Algorithm 1 only requires O(KRD2

1)

operations (linear growth in R) to compute such CPD.

100 tensors as described before, ran Algorithm 1 to obtain its
CPD, and recorded the elapsed time in each trial. The results
are summarized in Figure 8. One of the main advantages of
the CPD is that it only requires to store KRD1 values (linear
growth in K). Theorem 2 states that computing the CPD only
requires O(KRD2

1) operations (linear growth in K).

Noisy Setting

In our second set of experiments we will study the
behavior of Algorithm 2 as a function of its dimensions,
the noise level and the parameter N indicating the number
of columns used to estimate the subspace spanned by U1.
To this end, we first generated X as before, with K = 4 and
R = 10 fixed, and D1 =D2 = ⋯DK . We then contaminated it
with N(0, σ2) i.i.d. entries, to obtain observations according
to (4).

First we study the behavior of Algorithm 2 as a function
of the noise level and the parameter N ∈ [R,DK−1

1 ] =
[10,64,000], with D1 = 40 fixed. For each (N,σ) pair we
generated 100 noisy tensors, ran Algorithm 2, and recorded

Fig. 8: Average time (over 100 trials) required by Algorithm 1
to compute the CPD of a K-order, rank-R tensor of dimensions
D1×D1×⋯×D1, as a function of K, with D1 = 3 and R = 2 fixed.
Notice that explicitly storing such tensor requires room for DK

1

values (exponential growth in K). In contrast, storing the CPD only
requires room for KRD1 values (linear growth in K). Theorem 2
shows that Algorithm 1 only requires O(KRD2

1) operations (linear
growth in K) to compute such CPD.

(i) the estimation error of the subspace spanned by U1,
measured as the Frobenius norm of the difference between
the projection operators (ii) the normalized error between
the original uncontaminated tensor and the tensor obtained
by the estimated CPD, and (iii) the elapsed time of the
algorithm. The results are summarized in Figure 9.

As discussed in Section IV, there is a tradeoff between the
accuracy and the computational complexity of Algorithm 2.
This is regulated by the parameter N indicating the number
of columns used to obtain Ũ1 in step 3. The larger N , the
higher precision, and the higher computational complexity.
In the rightmost image of Figure 9 we can see that the
computational complexity grows with N . Conversely, in the
leftmost image of Figure 9 we can see that the estimation
error of the subspace spanned by U1 decreases with N
(consistency). This follows as a simple consequence of the
law of large numbers.

Subspace Mean Error CPD Mean Error CPD Median Error CPD Mean Time

Fig. 9: Transition diagram of estimation errors (first three figures) and elapsed time (rightmost figure) of Algorithm 2 as a function of the
noise level σ and the parameter N indicating the number of columns used to estimate the subspace spanned by U1. In these experiments
we fixed D1 = 40, K = 5 and R = 10. The color of each (N,σ) pixel indicates the average over 100 trials (the lighter the better). As
discussed in Section IV, there is a tradeoff between the accuracy and the computational complexity of Algorithm 2, which is regulated
by the parameter N . The larger N , the higher precision (see leftmost figure), and the higher computational complexity (see rightmost
figure). The median error shows that most of the time, Algorithm 2 can efficiently and accurately (within the noise level) estimate the
CPD of contaminated low-rank tensors. However, in some cases the entries in X21

R and X22
R are too noisy. This causes that our change

of basis Γ is inaccurate, which leads to a poor estimation of the CPD (see mean error). We noticed that in some noisy cases, computing
a subset of R leading singular values leads to numerical problems, which lead to the inconsistent pattern in the bottom-right corner of
the rightmost figure.
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Fig. 10: Transition diagram of estimation errors (first three figures) and elapsed time (rightmost figure) of Algorithm 2 as a function of
the dimension D1 and the noise level σ, with K = 5, R = 10 and N =DK−1

1 fixed. The color of each (D1, σ) pixel indicates the average
over 100 trials (the lighter the better). We point out that the subspace estimation of the case D1 = R = 10 (bottom row of the leftmost
figure) is mostly zero because in this case, the subspace spanned by U1 is the whole space, whence any D1 = R = 10 linearly independent
columns would span the same subspace. The leftmost figure shows that Algorithm 2 can consistently estimate this subspace (within the
noise level), regardless of the dimension of the tensor. The median error shows that most of the time, Algorithm 2 can efficiently and
accurately (within the noise level) estimate the CPD of contaminated low-rank tensors. However, as in the experiments of Figure 9, in
some cases the entries in X21

R and X22
R are too noisy. This causes that our change of basis Γ is inaccurate, which leads to a poor estimation

of the CPD (see mean error).

However, determining the subspace spanned by U1 is not
enough for the CPD; we need to estimate the right basis of
this subspace. Once we have an estimate of this subspace,
given by span{Ũ1}, Algorithm 2 uses X21

R and X22
R to

estimate the right change of basis Γ. Unfortunately, if the
entries in X21

R and X22
R are too noisy, our change of basis

Γ can be inaccurate, which leads to a poor estimation of the
CPD. In our experiments, we can see that most of the time
Algorithm 2 can efficiently and accurately (within the noise
level) estimate the CPD of contaminated low-rank tensors
(see the median error). However, there are some cases where
our estimate of the basis U1 is poor, which leads to an
inaccurate CPD (see the mean error). Our future work will
investigate better techniques to use more entries in X to
obtain consistent estimates of Γ, so that the noise cancels
out as we use more entries.

In our final experiment we study the behavior of Algorithm
2 as a function of the noise level and D1. For each (D1, σ)
pair we generated 100 noisy tensors, ran Algorithm 2 using
all the columns in X in step 3 (i.e., N =DK−1

1 = 64,000), and
recorded the same three values as in our previous experiment.
The results, summarized in Figure 10 show that most of
the time, Algorithm 2 can efficiently and accurately (within
the noise level) estimate the CPD of contaminated low-
rank tensors (see median error). However, as in our previous
experiment, in some cases the entries in X21

R and X22
R are too

noisy. This causes that our change of basis Γ is inaccurate,
which leads to a poor estimation of the CPD (see mean error).

VI. CONCLUSIONS

In this paper we present a simple and efficient method to
compute the CPD of generic low-rank tensors using elemen-
tary linear algebra. The key insight is that all the columns
in a low-rank tensor lie in a low-dimensional subspace, and
the coefficients of the columns in each slice with respect to
the right basis are scaled copies of one an other. The basis,
together with the coefficients of a few carefully selected
columns determine the CPD. The computational complexity

of our method scales linearly in the order and the rank of
the tensor, and at most quadratically in its largest dimension,
which is confirmed by our experiments. A straightforward
extension to noisy settings produces reasonable results on
median. However, in some cases, the few entries used for our
estimates can be very noisy, which results in a poor CPD.
Our future work will investigate new techniques to obtain
more consistent estimators.
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