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Abstract—This paper studies the following question: where
should an adversary place an outlier of a given magnitude in
order to maximize the error of the subspace estimated by PCA?
We give the exact location of this worst possible outlier, and the
exact expression of the maximum possible error. Equivalently,
we determine the information-theoretic bounds on how much an
outlier can tilt a subspace in its direction. This in turn provides
universal (worst-case) error bounds for PCA under arbitrary
noisy settings. Our results also have several implications on
adaptive PCA, online PCA, and rank-one updates. We illustrate
our results with a subspace tracking experiment.

I. INTRODUCTION

Subspace models lie at the heart of data analysis. From
biologists studying genes to astronomers studying galaxies,
scientists often want to estimate the low-dimensional subspace
that best explains their data. Principal Component Analysis
(PCA) is arguably the most widely used technique for this
purpose. However, it is well-known that PCA is sensitive to
outliers. In fact, depending on its direction and magnitude, a
single outlier can cause an arbitrarily inaccurate estimate.

It is easy to see that for a given direction, if the magnitude of
an outlier increases, then the error of the subspace estimated by
PCA will either remain constant or increase (but not decrease).
In other words, larger outliers can only make things worse.
On the other hand, for a fixed magnitude, some directions
are worse than others. To build some intuition, consider data
lying in a low-dimensional subspace X , as in Figure 1. Where
would an adversary place an outlier y of a given magnitude
such that the subspace Z estimated by PCA were as far as
possible from X?

At first glance, this might look deceivingly simple. For
example, if X and Z are 1-dimensional, as in the left of Figure
1, one could think that the angle ϕ between X and Z can only
grow as θ asymptotically approaches π/2. However, this is not
the case. In fact, ϕ will initially increase as θ grows from 0, but

Fig. 1. Each black point represents a datum lying in a low-dimensional
subspace X . y is an outlier and Z is the subspace that PCA estimates from
all the data, including y. Fixing ∥y∥, this paper determines where an adversary
would place y such that Z were as far as possible from X .

at some point ϕ will start decreasing as θ approaches π/2 (see
Figure 2). In the 1-dimensional case, the question reduces to
finding the angle θ (which determines the direction of y) that
maximizes ϕ. In general, if X and Z have dimensions larger
than 1, as in the right of Figure 1, the goal is to determine the
direction of y that maximizes the distance between X and Z.
That is precisely what we do in this paper.

In this paper we determine the exact location of the worst
possible outlier. More precisely, for a given magnitude, we
determine the direction of the outlier y⋆ that maximizes the
error of the subspace estimated by PCA. Our main result shows
that y⋆ must have the right components (which we determine
exactly) in two directions: the direction of smallest variance
in X , and a direction orthogonal to X . In addition, we give
the exact expression of the worst possible error.

Equivalently, our results determine the information-theoretic
bounds on how much an outlier can tilt a subspace in its
direction. This in turn provides universal (worst-case) error
bounds for PCA under arbitrary noisy settings. Since we
also determine the position of the outlier that achieves this
maximum tilting, our results also have several implications on
adaptive PCA, online PCA, and rank-one updates. We illustrate
our results with a subspace tracking experiment.

Organization of the paper

In Section II we formally state the problem and our main
results. In Section III we discuss related work. Section IV
illustrates our results with an experiment that is tightly related
to online PCA, subspace tracking and rank-one updates. We
give the proof of our main theorem in Section V.

Fig. 2. If X and Z are 1-dimensional, as in the left of Figure 1, the angle ϕ
between X and Z first increases as θ grows from 0, and then decreases as θ
approaches π/2. Here ∥y∥ = 1, and λ is the energy in X , which summarizes
the number of inliers and their magnitudes. In this 1-dimensional case, the
direction of y that maximizes the distance between X and Z is given by the
angle θ that maximizes ϕ.



II. MODEL AND MAIN RESULTS

Let X be an r-dimensional subspace in Rd, r < d. Let X be
a data matrix with columns lying in X . Let y be an outlier,
that is, a column vector in Rd/X . Let Z be r-dimensional
subspace in Rd spanned by the r leading left singular vectors
of Z ∶= [X y].

Depending on X and y, Z can be close or far from X .
Given X and the magnitude of y, we want to determine the
direction of y that maximizes the distance between X and
Z. To measure such distance we will use the largest principal
angle between X and Z, defined as follows [1].

Definition 1 (Principal angles). Let X,Z be two r-
dimensional subspaces in Rd. The principal angles
ϕ1, ϕ2, . . . , ϕr ∈ [0, π/2] between X and Z are defined
recursively by

cosϕi ∶= max
x∈X,z∈Z

xTz =∶ xT
i zi s.t.

∥x∥ = ∥z∥ = 1 and

xTxj = zTzj = 0 ∀ j = 1,2, . . . , i − 1.

Intuitively, the principal angles are the collection of smallest
angles in orthogonal directions between vectors in X and Z.
Notice that they satisfy 0 ≤ ϕ1 ≤ ϕ2 ≤ ⋯ ≤ ϕr ≤ π/2. To
measure the distance between X and Z we will use their
largest principal angle ϕr, which we will denote simply as
ϕ. Given orthonormal bases UX and UZ , cos(ϕ) is given by
the smallest singular value of UT

XUZ . See Chapter 12, Section
12.4.3 in [1] to know more about principal angles and their
computation.

First notice that the singular vectors of Z only depend on
y and the left singular vectors and values of X. So we can
assume without loss of generality (w.l.o.g.) that X only has
r columns, whose directions and magnitudes are given by its
left singular vectors and values. Furthermore, we can rewrite
X and y with respect to an orthonormal basis whose first r
vectors span X , and whose first r+1 vectors span Z. Hence we
can assume w.l.o.g. that X and y have the following forms:

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1
λ2

⋱

λr

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1
y2
⋮

yr
yr+1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (1)

where λ1 ≥ λ2 ≥ ⋯ ≥ λr, and blank spaces represent zeros.
See Section IV for an example of how to handle arbitrary data
and transform it to the form in (1).

Next observe that the leading left singular vectors of Z and
Z/α are the same for every α > 0, including α = ∥y∥. So we
can assume w.l.o.g. that ∥y∥ = 1 with the understanding that
otherwise we can simply rescale. This way the information
of the magnitude of y is encoded in λr. Large values of λr
correspond to outliers of small magnitude compared to the
energy of the inliers, and vice versa. Intuitively, we can think
of λr as the signal-to-noise ratio.

Finally, let ei denote the ith canonical vector in Rd. Notice
that if λr < 1, i.e., if the energy of the inliers is lower than the
magnitude of the outlier, then y = er+1 trivially maximizes ϕ.
To see this, observe that X is spanned by e1,e2, . . . ,er. So
if y = er+1, then the r + 1 left singular vectors of Z will be
e1,e2, . . . ,er and er+1. Similarly, the singular values of Z will
be λ1, λ2, . . . , λr and 1. If λr < 1, then er+1 will be among the
leading singular vectors, and the er will become the (r+1)th

singular vector. Since X and Z share r − 1 spanning vectors,
namely e1,e2, . . . ,er−1, their largest principal angle ϕ is the
angle between er and er+1, i.e, π/2, which is maximal. Hence,
we will assume w.l.o.g. that λr ≥ 1 with the understanding
that if this is not the case, then y = er+1 trivially maximizes
ϕ.

With this, we are ready to present our main theorem. It
determines the exact location of the outlier y that maximizes
the angle ϕ between X and Z, and gives the exact expression
of the maximum possible ϕ, both as a function of the ratio
between the energy of the inliers and the magnitude of the
outlier, given by λr. The proof is given in Section V.

Theorem 1. Under the setup above, the unitary vector
y⋆ ∈ Rd that maximizes the largest principal angle
between X and Z has components:

y⋆i =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

cos θ⋆ i = r,
sin θ⋆ i = r + 1,
0 otherwise,

where

θ⋆ ∶=

1

2
arccos(−

1

λ2r
) ∈ [π/4, π/2], (2)

whence the largest principal angle between X and Z is

ϕ⋆ = arccos
⎛

⎝

sin2 θ⋆ − σ2
⋆

√

(sin2 θ⋆ − σ2⋆)2 + (sin θ⋆ cos θ⋆)2
⎞

⎠

,

with

σ2
⋆ =

(λ2r + 1) +
√

(λ2r + 1)2 − 4λ2r sin2 θ⋆

2
.

In words, Theorem 1 states that the outlier y⋆ that max-
imizes ϕ has a component cos θ⋆ in the direction of the
smallest singular vector of X, and a component sin θ⋆ in an
orthogonal direction of X . The intuition is that it is easier to
tilt smaller vectors. One interpretation is that y⋆ is tilting X as
much as possible (ϕ⋆) using a lever of size cos θ⋆ to pull the
smallest singular vector of X (of size λr) in an orthogonal
direction (er+1) with strength sin θ⋆. See Figure 3 to build
some intuition.

Remark 1. Due to the symmetry of the problem, there are in
fact four vectors y⋆ that maximize ϕ, given by the four sign
combinations in the two nonzero values in y⋆.



Fig. 3. Theorem 1 shows that the outlier y⋆ that maximizes ϕ has a
component cos θ⋆ in the direction of the smallest singular vector of X, and
a component sin θ⋆ in an orthogonal direction of X , with θ⋆ as in (2).

III. RELATED WORK

It is well known that a single outlier of large magnitude
can severely compromise the performance of PCA. Hence
there is a broad interest in Robust PCA. Common approaches
include M-estimators [2], random sampling [3, 4], influence
function techniques [5], alternating minimization [6] and con-
vex relaxations [7–14]. In principle, these approaches aim to
distinguish between inliers and outliers, and only estimate the
subspace corresponding to the inliers. However, to the best of
our knowledge, there is no analysis of PCA’s performance as
a function of the location of the outliers.

Our work determines the exact location of the outlier that
would maximally tilt a subspace. In this sense, our work is
tightly related to online PCA, subspace tracking and rank-
one updates, where one aims to efficiently estimate or track
subspaces as new data points arrive, without computing the full
singular value decomposition. Some representative approaches
include exact rank-one updates [15, 16], robust incremental
algorithms [17], standard and exponentiated gradient descent
[18], approximation algorithms [19, 20] and recursive algo-
rithms [21], among others [22–24]. All these papers study
how to update a subspace given a new sample. In contrast,
we quantify the subspace update as a function of the location
of a new sample (outlier). We take this one step further,
and determine the location of the sample that would make
the subspace update as large as possible. In the next section
we show an experiment that illustrates our results in the
framework of online PCA and rank-one updates.

IV. EXPERIMENTS

In this section we illustrate our results with an experiment
that is tightly related to online PCA, subspace tracking and
rank-one updates. This experiment compares the error of PCA
when data is contaminated with two types of outliers:
(i) Outliers located adversarially to maximize error and
(ii) Isotropic outliers in random locations.
These experiments also illustrate how to transform arbitrary
data into the setup in Section II.

Suppose we observe a data matrix X̃ ∈ Rd×n given by

X̃ = XB + E,

where both X ∈ Rd×r and B ∈ Rr×n have N(0,1) i.i.d. entries,
and E ∈ Rd×n has N(0, ε) i.i.d. entries. This way X is a basis

of the subspace X that we aim to identify and ε ∈ R represents
the noise level. Notice that X̃ has more than r columns and
is not in the form of (1).

As in online PCA and subspace tracking, we will start
with an initial estimate of X , and then update it iteratively
as new data comes in. More precisely, let U0 ∈ Rd×r and
Λ0 ∈ Rr×r be the matrices with the r leading left singular
vectors and values of X̃ and let X0 ∈ Rd×r be a scaled
copy of U0Λ0 such that its smallest singular value is equal
to λr. This is done so that each new datum is given the
same importance. There are many alternatives to this, for
example, each new datum can be given diminishing, adaptive
or even adversarial importance. However, the simplest strategy
of giving each datum the same importance will do for our
illustration purposes. X0 ∶= span[X0] will be our initial
estimate of X .

Next, at each time t > 0 we will generate a new datum yt,
and update our subspace estimate. Given yt, let Ut ∈ Rd×r
and Λt ∈ Rr×r be the matrices with the r leading left singular
vectors and values of [Xt−1 yt] ∈ Rd×(r+1), and let Xt ∈ Rd×r
be a scaled copy of UtΛt such that its smallest singular value
is equal to λr. Again, this is done so that each new datum
is given the same importance. Xt ∶= span[Xt] will be our
estimate of X at time t. Notice that Xt can be computed
explicitly or using a rank-one update of Xt−1 [15–24].

Now, each yt will be a unit-norm outlier with probability
p and a unit-norm inlier with probability 1 − p. Inliers are
generated as yt = Xbt + εt, where bt ∈ Rr ∼ N(0, I) and
εt ∈ Rd ∼ N(0, εI). Here I denotes the identity matrix. For the
setup in (ii), we generate outliers yt with N(0,1) entries. For
the setup in (i), we generate outliers yt using Theorem 1 in
order to tilt Xt−1 as much as possible. Notice, however, that
Xt−1 is not in the diagonal form of (1). Nonetheless, we can
rotate Xt−1 into that form, and then rotate it back. To this end,
let Ūt−1 be an orthonormal basis of Rd whose first columns are
Ut−1. Left-multiplying by Ū

T
t−1 we can change our coordinate

system. The representation of Xt−1 with respect to this new
coordinate system is given by X′

t−1 ∶= Ū
T
t−1Xt−1. Now X′

t−1 =
Λt−1 has the diagonal form in (1). Hence the outlier that tilts
span[X′

t−1] the most is given by y⋆ as in Theorem 1 with λr
being the smallest singular value of X′

t−1 (which is also the
smallest singular value of Xt−1). To recover the outlier yt that
tilts Xt−1 the most, all that remains is to write y⋆ in the initial
coordinate system, which can be done by left-multiplying by
Ūt−1. To summarize, the outlier yt that tilts Xt−1 the most
is given by yt = Ūt−1y⋆, with y⋆ as in Theorem 1, where
λr is the smallest singular value of Xt−1. The results with
d = 5, r = 4, n = 100 and ε = 10−3 are summarized in Figure
4.

V. PROOF

In this section we give the proof of Theorem 1. The proof
is divided in two main parts. First we show that the y⋆ ∈ Rd



Fig. 4. Left: One trial of the evolution of ϕ over time with λr = 5 and
a fraction of p = 0.05 outliers. The steady decreases in ϕ correspond to
new inliers coming in. The dramatic increases in ϕ correspond to the arrival
of adversarial outliers. Notice that random outliers may slightly increase or
decrease ϕ. Right: Angle ϕ after 500 updates (average over 100 trials) as a
function of λr , which essentially determines the influence of each new datum,
and the fraction of adversarial outliers p. Black represents perfect recovery
(ϕ = 0) and white represents maximal error (ϕ = π/2). This shows that even a
small fraction of adversarial outliers of small magnitude can seriously perturb
PCA’s performance, even under a low-noise regime.

that maximizes ϕ must satisfy

{
y⋆i ≠ 0 i = r, r + 1,
y⋆i = 0 otherwise, (3)

and then we show the specific values of y⋆r and y⋆r+1 that
maximize ϕ.

Recall that we are assuming w.l.o.g. that our outlier has the
form in (1). Hence y⋆i = 0 for every i > r + 1. Also, since
y⋆ ∉X by definition, y⋆r+1 ≠ 0. It remains to show that y⋆r ≠ 0
and y⋆i = 0 for every i < r.

To see this, notice that because of the zero blocks in (1), X
and Z are r-dimensional subspaces that only have energy in
the first r + 1 coordinates. This implies that their intersection
is an (r − 1)-dimensional subspace. Let W ∈ Rd×(r−1) be an
orthogonal basis of W ∶= X ∩ Z. Let x ∈ X and z ∈ Z be
vectors orthogonal to W , such that [W x] and [W z] are
orthogonal bases of X and Z. By the definition of principal
angles, ϕ is the angle between x and z (see Figure 5 to build
intuition).

It is easy to see that z must have a nonzero component in the
direction of er+1. Otherwise z ∈ X , implying [W z] ⊂ X ,
implying Z = X , implying ϕ = 0. Similarly, z must have
a nonzero component in the direction of x. Otherwise, z is
orthogonal to x, implying z is orthogonal to [W x] = X ,
implying z = er+1, implying y = er+1 and ∥y∥ = 1 > λr,
contradicting our assumption that λr > 1.

Fig. 5. W ∶= X∩Z is an (r−1)-dimensional subspace in Rd. Here r = 2 and
d = 3. x ∈ X and z ∈ Z are vectors orthogonal to W . The largest principal
angle ϕ between X and Z is the angle between x and z.

Clearly, z ∈ span[Z] = span[W x er+1], and since z is
orthogonal to W , it follows that z lies in the plane spanned
by x and er+1. It is easy to see that z will be closer to x
(whence ϕ will be smaller) if the energy of X in the direction
of x is large, and vice versa. It follows that ϕ is maximized
when x is in the direction of lowest energy in X, namely er,
because we are assuming λ1 ≥ λ2 ≥ ⋯ ≥ λr. In conclusion, ϕ
is maximized when z lies in span[er er+1].

Similarly, fix the direction of y and let ŷ be the projection
of y onto span[er er+1]. It is easy to see that z will be closer
to y (whence ϕ will be larger) as ∥ŷ∥ grows. It follows that
ϕ is maximized when ∥ŷ∥ = ∥y∥, i.e., when the only nonzero
components in y are yr and yr+1. We thus conclude that y⋆

must satisfy (3).
It remains to determine the specific values of y⋆r and y⋆r+1

that maximize ϕ, which we will do next. Since y⋆ satisfies
(3), ϕ is maximized when Z has the following block-diagonal
form, where blank spaces represent zeros:

Z =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1

λ2

⋱

λr−1
λr yr

yr+1
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Let xr be the rth column in Z and let z be the leading left
singular vector of Zr ∶= [xr y]. Then the singular values of
Z are λ1, λ2, . . . , λr−1 and the two singular values of Zr, one
larger and one smaller than λr. Since λ1 ≥ λ2 ≥ ⋯ ≥ λr, it
follows that Z will be the r-dimensional subspace spanned by
the first r − 1 canonical vectors and z.

Furthermore, since X and Z share r − 1 spanning vectors,
namely W = [e1 e2 ⋯ er−1], it follows that the largest
principal angle ϕ between X and Z is the angle between xr
and z. Our goal is to determine the location of the outlier y⋆

that maximizes this angle. Since ∥y⋆∥ = 1 by assumption and
y⋆ satisfies (3), we can write it as

y⋆i =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

cos θ i = r,
sin θ i = r + 1,
0 otherwise,

for some θ. By symmetry, we can assume without loss of
generality that θ ∈ [0, π/2]. We thus want to determine the
angle θ⋆ ∈ [0, π/2] that maximizes the angle ϕ between xr
and z. To this end we will use standard techniques: determine
ϕ in closed form, take its derivative with respect to θ, set it
to zero, and solve for θ.

To do this, let σ be the leading left singular value of
Zr. From textbook linear algebra, we know σ2 is the lead-
ing eigenvalue of ZrZ

T
r , which is the largest solution to

∣ZrZ
T
r − σ

2I∣ = 0. Writing

∣ZrZ
T
r − σ

2I∣ =

RRRRRRRRRRRRRRRRRR

−σ2I
λ2
r + cos

2 θ − σ2 sin θ cos θ
sin θ cos θ sin2 θ − σ2

−σ2I

RRRRRRRRRRRRRRRRRR

= (σ4
− σ2
(λ2
r + 1) + λ

2
r sin

2 θ)σ2(d−2),



we can see that the leading eigenvalue of ZrZ
T
r is

σ2
=

(λ2r + 1) +
√

(λ2r + 1)2 − 4λ2r sin2 θ

2
. (4)

Similarly, z is the leading eigenvector of ZrZ
T
r , i.e., the

solution to (ZrZ
T
r − σ2I)z = 0, with σ2 as in (4). By

construction, (ZrZ
T
r − σ

2I) is rank-deficient. In particular,
from its block diagonal structure it is easy to see that only
rows r and r + 1 can be linearly dependent. This implies that

[0 λ2r + cos2 θ − σ2 sin θ cos θ 0]z = 0

if and only if

[0 sin θ cos θ sin2 θ − σ2 0]z = 0.

We can use either equation to solve for z. Rewriting the later
as

(sin θ cos θ)zr + (sin2 θ − σ2
)zr+1 = 0,

it is easy to see that one solution is given by

zi =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

sin2 θ − σ2 i = r,
− sin θ cos θ i = r + 1,
0 otherwise.

Recall that we are interested in the angle ϕ between xr and
z. This angle is given by

ϕ = arccos(
⟨xr,z⟩

∥xr∥∥z∥
)

= arccos
⎛

⎝

sin2 θ − σ2

√

(sin2 θ − σ2
)
2
+ (sin θ cos θ)2

⎞

⎠

, (5)

with σ2 as in (4). Figure 2 depicts ϕ as a function of θ and λr.
We want to find the angle θ that maximizes ϕ, so we will take
the derivative of ϕ with respect to θ, set it to zero, and solve
for θ. Notice that σ2 in (4) also depends on θ. The desired
derivative is given by

ϕ′ =

ABCD

EF
,

where

A = csc(2θ),

B = ∣sin(2θ)∣ ,

C = λ2r + cos(2θ) +
√

1 + λ4r + 2λ2r cos(2θ),

D = 1 + λ2r cos(2θ),

E =

√

1 + λ4r + 2λ2r cos(2θ),

F = 1 + λ4r + λ
2
r

√

1 + λ4r + 2λ2r cos(2θ)

+ cos(2θ)(2λ2r +
√

1 + λ4r + 2λ2r cos(2θ)).

First that A = csc(2θ) ≠ 0 for every θ. Recall that we
are assuming w.l.o.g. that θ ∈ [0, π/2]. This implies that

B = ∣sin(2θ)∣ and C = λ2r + cos(2θ) +
√

1 + λ4r + 2λ2r cos(2θ)
are zero if and only if θ ∈ {0, π/2}. If θ = 0, then y and z

are parallel to xr, whence ϕ = 0. See Figure 1 to build some
intuition. On the other hand, if θ = π/2, then y is the (r+1)th

canonical vector. Since λr > 1 = ∥y∥, y will be the (r + 1)th

left singular vector, which implies ϕ = 0 as well. It follows
that θ ∈ {0, π/2} are minimizers of ϕ.

Finally, D = 1 + λ2r cos(2θ) = 0 if θ = 1/2arccos (−1/λ2
r). It

follows that this is the angle that maximizes ϕ, as claimed.
Notice that since λr > 1 by assumption, then −1 < −1/λ2

r < 0,
which implies θ⋆ ∈ [π/4, π/2]. ◻
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