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Abstract—Inferring low-dimensional subspaces that describe
high-dimensional, highly incomplete datasets has become a rou-
tinely procedure in modern data science. This paper is about
a curious phenomenon related to the amount of information
required to estimate a subspace. On one hand, it has been shown
that information-theoretically, data in Rd must be observed on at
least ` = r+ 1 coordinates to uniquely identify an r-dimensional
subspace that approximates it. On the other hand, it is well-
known that the subspace containing a dataset can be estimated
through its sample covariance matrix, which only requires
observing 2 coordinates per datapoint (regardless of r!). At first
glance, this may seem to contradict the information-theoretic
bound. The key lies in the subtle difference between identifiability
(uniqueness) and estimation (most probable). It is true that if
we only observed ` ≤ r coordinates per datapoint, there will
be infinitely many r-dimensional subspaces that perfectly agree
with the observations. However, some subspaces may be more
likely than others, which are revealed by the sample covariance.
This raises several fundamental questions: what are the algebraic
relationships hidden in 2 coordinates that allow estimating an
r-dimensional subspace? Moreover, are ` = 2 coordinates per
datapoint necessary for estimation, or is it possible with only
` = 1? In this paper we show that under certain assumptions, it
is possible to estimate some subspaces up to finite choice with as
few as ` = 1 entry per column, and opens the question of whether
there exist other subspace estimation methods that allow ` ≤ r
coordinates per datapoint, and that are more efficient than the
sample covariance, which converges slowly in the number of data
points n.

I. INTRODUCTION

This paper is about the following question. Consider a
collection of arbitrarily many points {x} lying in an r-
dimensional subspace U ⊂ Rd. Suppose you only observe
each point on ` ≤ r coordinates selected randomly. Can you
infer U? See Figure 1 to build some intuition.

It is easy to see that if ` = d (full data), U can be identified
as long as the set {x} contains r linearly independent vectors.
If, on the contrary, d > ` > r, it has been shown that U
can be estimated uniquely as long as data is observed in the
right places [8]. This is due to the fact that each incomplete
vector will produce ` − r polynomial constraints on U. The
pattern of observed data determines whether the constraints are
redundant, and if such pattern satisfies certain combinatorial
conditions (which happens with high probability under random
samplings), then the constraints produced by all the data will
determine U uniquely (see Figure 2 for more intuition).

However, if ` ≤ r, then any r-dimensional subspace V in
general position will agree with the observed data (even if
n := |{x}| → ∞). To understand this, let ω ⊂ {1, . . . ,d}
indicate a subset of ` ≤ r observed entries. Let xω ∈ R` and
Vω ⊂ R` indicate the restrictions of x and V to the coordinates
in ω. Since V is r-dimensional and in general position, and

r = 1, d = 2 r = 2, d = 3 r = 2, d = 3

Fig. 1: Can you find the r-dimensional subspace containing the full points
if you only observe each point on ` ≤ r coordinates? Each point in
this figure represents an incomplete datum, or equivalently, the projection
of the complete datum onto its observed coordinates. Left: Each point is only
observed on ` = r = 1 coordinate. The points in the x axis are missing
the y coordinate, and the points in the y axis are missing the x coordinate.
Can you find the r-dimensional subspace (line) containing the full points?
Center: Each point is only observed on ` = r = 2 coordinates. The points in
the (x, y) plane (resp. (x, z) and (y, z)) are missing the z coordinate (resp. y
and x). Can you find the r-dimensional subspace (plane) containing the full
points? Right: Each point is only observed on ` = r − 1 = 1 coordinates.
The points in the x axis (resp. y and z) are missing the {y, z} coordinates
(resp. {x, z} and {x, y}). Can you find the r-dimensional subspace (plane)
containing the full points?

` ≤ r, it follows that Vω = R`. In other words, Vω covers the
entire `-dimensional space. Consequently, xω ∈ Vω . This is
true for every x ∈ Rd (not only in U), for every ω with ` ≤ r
elements, and for every r-dimensional subspace V in general
position. Equivalently, it is possible that each xω corresponds
to a point in almost any V, as illustrated in Figure 3.

This suggests that if ` ≤ r, estimating U should be
impossible. Surprisingly, it is not! Furthermore, it only takes
elemental statistics to get convinced. Recall that if {x} are
drawn independently according to an absolutely continuous
distribution with respect to the Lebesgue measure on U,
with finite fourth moment and zero mean (very standard and
reasonable assumptions), then Σ := cov(x) = UUT, where
U ∈ Rd×r spans U. Observing rows {i, j} in x provides an
estimate (through their outer product) of entries {i, j} × {i, j}

r = 1, d = 2 r = 2, d = 3 r = 1, d = 3

Fig. 2: It has been shown that U is identifiable if each point is observed
on ` > r entries. In the left and center this is the trivial case where ` =
r + 1 = d, i.e., points are fully observed. In the right, U is a 1-dimensional
subspace (line), and enough points are observed on ` = r+1 = 2 coordinates;
consequently U is identifiable. This paper is about estimating U when each
point is only observed on ` ≤ r coordinates (see Figure 1).



r = 1, d = 2 r = 2,d = 3

Fig. 3: If points are only observed on ` ≤ r coordinates (depicted in gray),
then each can be interpolated to almost any r-dimensional subspace V (here we
only display two subspaces). In other words, it is possible that the (unknown)
complete points lie in almost any V. Hence, how could we possibly identify
U when ` ≤ r?

of Σ. If for every i, j ∈ {1, . . . ,d}, enough vectors are
observed on rows {i, j}, then Σ can be estimated with arbitrary
precision, which in turn implies that U can be inferred as
the leading singular values even if vectors are only observed
on ` = 2 entries. This well-known estimation method is
summarized in Algorithm 1. We point out that this method
also applies if data is near a low-dimensional subspace, i.e.,
if instead of x we observe x + ε, where ε is a noise vector
with finite second moment and reasonable variance (i.e.,
comparable to the signal strength).

This apparent paradox can be understood in two different
notions of identifiability. On one hand, U is unidentifiable in
the sense that if ` ≤ r, then almost every r-dimensional sub-
space can potentially explain the observed data. On the other
hand, the quadric outer products encoded in the covariance
matrix reveal the subspace under which the full data would
have minimum variance (see Figure 4), which coincides with
U under standard regularity conditions.

This paper goes one step further to show an even more
surprising result: in some cases it is indeed possible to estimate
subspaces up to finite choice with as little as ` = 1 coordinates.
In fact, as we show in our experiments, one can infer U with
as few as ` = 1 samples per column and even under signal-
to-noise ratio close to 1.

Algorithm 1: Subspace Estimation by Covariance SVD
Input: Partially observed vectors {xω}, subspace
dimension r.

1. Estimate the incomplete covariance matrix:

Σ̂ij =

∑
xω

xixj1{i,j∈ω}∑
ω 1{i,j∈ω}

2. Singular value decomposition of Σ̂:

Û = leading r left singular vectors of Σ̂.

Output: Subspace Û spanned by Û.

Organization of the paper

Section II describes the motivation behind this study. In
Section III we give a formal setup of the problem and
describe our main assumptions. Section IV presents our main
theoretical result, and introduces our practical algorithm for
subspace estimation. Section V discusses the paradox implied
by our results. Section VI gives a discussion of the relation
between subspace estimation and matrix completion. Section
VII gives some insight into our assumptions. All experiments
are in Section VIII, and Section IX discusses conclusions,
future lines of work, and the general implications of our
results.

II. MOTIVATION AND PRIOR WORK

In many modern problems one aims to infer a linear
subspace U that contains the columns of a highly incomplete
data matrix X. One typical example is the popular problem
of low-rank matrix completion (LRMC) [1]–[8], where one
aims to infer the missing entries in a low-rank matrix X
(meaning that its columns lie in a low-dimensional subspace
U). Identifying U allows one to infer the missing entries in X
(by projecting onto U).

One classical motivation is recommender systems [9], [10],
where each row of X represents an item, and each column
represents a user. We only observe an entry in X whenever a
user rates an item, and the goal is to predict unseen ratings in
order to make good recommendations. Since the columns of
X lie in a subspace, each column (user) can be represented
as a linear combination of a few others. Equivalently, each
column of X can be written as a linear combination of a
basis of U. Similar scenarios arise when monitoring large
and complex networked systems such as the Internet, power
grid, or wireless, social and biological networks. Hop counts
over a network lie in a union of subspaces; by estimating
the subspaces one can infer the topology of the network [11].
However, simultaneously measuring all individual components
in these large systems is impossible with current technology,
and even in smaller systems it is difficult or impractical to do
so. In computer vision, the background and each moving ob-
ject can be modeled using subspaces [12]–[15], but occlusions,
shadows and other phenomenons naturally produce missing
data. In classical settings of linear regression, like surveys,
subsets of the data are simply unavailable (subjects do not
know or do not want to provide information).

Motivated by these and other modern applications, recent
developments in optimization, statistical signal processing, and
information theory have resulted in theory and algorithms
showing that subspaces can indeed be inferred from highly
incomplete data. For instance, [1]–[4] show that with high
probability, the r-dimensional subspace U ⊂ Rd containing
the columns of X can be uniquely identified if X is observed
on ` = O(r log d) entries per column selected uniformly at
random, and U has bounded coherence (parameter indicating
how aligned a subspace is with the canonical axes). These
results were later extended to include more general sampling
schemes (non-uniform) [5], more coherent subspaces [6], and



Fig. 4: Left: The incomplete column xω can be explained by infinitely many 1-dimensional subspaces, for example U1 and U2. However, the variance of
the corresponding full vector x under U1 is much smaller than under U2. Right: The sample covariance reveals the subspace under which the full dataset X
would have minimum variance, in this case U1.

deterministic information-theoretic sampling conditions [8],
[16], [17]. Similarly, developing practical subspace estimation
algorithms for incomplete data that can handle noise, outliers
and other peculiarities, has been the focus of a wide variety
of studies in the last years [1]–[6].

In practice, however, one generally ignores a priori the di-
mension of the underlying subspace that explains the dataset at
hand. Moreover, the dimension r of the subspace often exceeds
the number of observed coordinates ` per datapoint. Hence, it
is of considerable interest to understand the limits of subspace
inference from incomplete data when ` ≤ r, and practical
methods for this type of inference. For example, we know
that the covariance method only requires ` = 2 coordinates
per datapoint; however, it requires a polynomial number of
data points to produce an accurate estimator, which is highly
suboptimal for ` > r (see Figure 5). For instance, even if we
observe ` = 50% of the entries in n = 100 data points in an
r = 5 dimensional subspace in ambient dimension d = 100,
selected uniformly at random, the subspace estimated through
the covariance matrix achieves 25% error, while even the
simplest LRMC methods, such as singular value thresholding
(SVT) [3] achieve zero. This raises two important questions:
(i) are ` = 2 coordinates per datapoint the fundamental limit
of subspace inference, or is it possible with only ` = 1, and
(ii) are there other algorithms, besides the covariance method,
that can estimate subspaces in the over-incomplete regime
(` ≤ r) but that do not require such huge number of data
points, similar to SVT for ` < r? In this paper we show that
in some cases it is indeed possible to identify U up to finite
choice with as little as ` = 1, thus addressing (i), and provide
an estimation method, also addressing (ii).

III. FORMAL SETUP AND ASSUMPTIONS

Let U be an r-dimensional subspace of Rd and let {x}
be a collection of n columns lying on U. Let xω denote the
incomplete version of x, observed only on the entries indicated
in ω ⊂ {1, . . . ,d}. The goal is to estimate U from {xω}.

Without any assumptions on {x} and {ω}, estimating U
may be impossible. For instance, if {x} lies inside a proper
subspace of U (for example, if U is a plane, and {x} lies in a
line inside U), then it would be impossible to estimate U (see

Figure 6 to build some intuition). To avoid pathological cases
like these, we will assume that {x} is generically spread over
U. More precisely:

(A1) The columns in {x} are drawn independently ac-
cording to an absolutely continuous distribution with
respect to the Lebesgue measure on U with zero
mean, and finite marginal variances σ2

i < ∞ for
i = 1, . . . ,d.

In words, A1 requires that the data {x} are in general
position over U. This guarantees that {x} has at least a little bit
of information in every direction of U, and that observing more
data will help estimating U. Similar genericity assumptions
are becoming increasingly common in matrix completion and
related problems [7], [8], [15]–[20]. See Section VII for a
further discussion about A1 and its relation to other typical
assumptions from the literature.

IV. MAIN RESULTS

Assumption A1 guarantees that {x} is well-spread over U.
However, this is not enough to identify U. We also need to
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Fig. 5: Subspace estimation error (average over 100 trials) of the covariance
method for subspace inference (Algorithm 1) and the LRMC method [3], as
a function of the fraction of observed entries. This shows the sub-optimality
of the covariance approach for ` > r observations per column, and calls the
attention for similar, more efficient methods for the over-incomplete regime
` ≤ r.



guarantee that the samplings {ω} have enough observations
and in the right places. For example, it would be impossible
to recover U unless each of its coordinates is sampled at least
once. Let ` denote the maximum number of nonzero entries
(observations) in a column of {ω}. Existing theory shows that
` > r is necessary to uniquely identify U [8], [16], [17]. In
fact, it is true that if ` ≤ r, then almost every r-dimensional
subspace will agree with {xω} (like in Figure 3). However,
under certain assumptions, some subspaces may be more likely
than others.

The main result of this paper is Theorem 1 below. It shows
that even if all columns of {xω} only have ` = 1 observation,
it is still possible to estimate U up to finite choice with
arbitrary accuracy (even though all r-dimensional subspaces
would agree with {xω}) when r = 1. The key idea behind
this result is to think of {x} as a collection of random vectors.
Since these vectors lie in U, they will have a covariance matrix
Σ = UUT, where U ∈ Rd×r is a basis of U. Thus, the
variance of the observed entries in the canonical axes provide
information of the one-dimensional subspace under which the
full data {x} would have the least variance (see Figures 7
and 4 for some intuition), which under the standard regularity
conditions in A1, coincides with the true subspace U.

Theorem 1. Let A1 hold. Suppose that U is a one-
dimensional subspace (r = 1), and that {xω} has ` = 1
nonzero entry per column, drawn uniformly at random
and independently across columns. Let {Û} be the set of
2d−2 subspaces spanned by {[±σ̂1 ± σ̂2 · · · ± σ̂d]

T},
where σ̂i represents the estimated marginal standard
deviation of the ith coordinate. Then P(U ∈ {Û}) → 1,
as n→∞.

Theorem 1 shows that we can estimate the underlying
subspace (up to finite choice) by observing only one sample
per column in {x}. The subspace estimate is not unique
because we never observe two entries of each column si-
multaneously (which would provide us with the covariance
estimate), and so we cannot know the direction of the one-
dimensional subspace. With only one entry per column, we

Fig. 6: Each column in {x} corresponds to a point in an r-dimensional
subspace U. In these figures, U is a 2-dimensional subspace (plane) of R3. In
the left, {x} are drawn generically from U, that is, independently according
to an absolutely continuous distribution with respect to the Lebesgue measure
on U, for example, according to a gaussian distribution on U. In this case,
the probability of observing a sample as in the right, where all columns lie
in a line inside U, is zero.

can only estimate the angle to the canonical axes (see Figure
8).

Proof. Let U be a one-dimensional subspace (r = 1) in Rd

that independently generates the columns {x}. Let xω denote
the incomplete version of x where we observe ` = 1 entry
per column, chosen randomly. Let {Û} be the set of 2d − 2
subspaces spanned by {[±σ̂1 ± σ̂2 · · · ± σ̂d]

T}, where
σ̂i represents the estimated marginal standard deviation of the
entries in the ith coordinate.

To prove the theorem, we need to show two statements:

1) U is spanned by one of the vectors in {[±σ1 ±
σ2 · · · ±σd]

T} where σi represents the true marginal
standard deviation of the entries in the ith coordinate.

2) The estimated standard deviations σ̂i converge in prob-
ability to the true standard deviations σi.

Statement (2) is trivially true by the Law of Large Numbers
(LLN). To see this, let x1, . . . , xni

denote all the entries
observed on the ith coordinate/row. By A1, x1, . . . , xni

are
an i.i.d. random sample with zero mean and finite marginal
variance. Notice that ni < n := |{x}|, but ni →∞ as n→∞
due to the random sampling assumption of Theorem 1. Since
σ2
i <∞, by LLN, σ̂2

i = 1
ni

∑ni

j=1 x
2
j

P−−−→ σ2
i .

To show (1), we will first show that if all data is positive,
then U is spanned by [σ1 σ2 · · · σd]

T. Then we will
argue that since we only observe one entry per column, we
cannot estimate the sign of the correlation between the ith and
jth coordinates, and hence if data contains negative numbers,
then U must be spanned by one of the vectors in {[±σ1 ±
σ2 · · · ± σd]

T}.
To this end, let x be a positive random vector lying in U,

and let u ∈ Rd be a vector spanning U. Since x ∈ U, we know
that x = uθ for some θ ∈ R, which further implies that Σ :=
cov(x) = αuuT, where α is the variance of θ. This implies
that the leading eigenvector of Σ provides a basis for U. We
will show that this eigenvector is [σ1 σ2 · · · σd]

T. To see
this, let x′ = [xi xj]

T and u′ = [ui uj] be vectors containing
the ith and jth entries of x and u. Since xi, xj > 0 (implying
that x′ lies in the first quadrant [0,∞)2) and U′ := span[u′]
is a line, it follows that corr(xi, xj) = 1, which further implies
that cov(xi, xj) = σiσj. This means that we can compute the
covariance matrix of x′ by only observing the variances:

Σ′ =

[
σ2
i σiσj

σiσj σ2
j

]
.

Next we can use elemental linear algebra to see that the leading
eigenvector of Σ′ is given by [σi σj]

T:[
σ2
i σiσj

σiσj σ2
j

] [
a
b

]
= λ

[
a
b

]
,

or equivalently:[
σ2
i − λ σiσj

σiσj σ2
j − λ

] [
a
b

]
=

[
0
0

]
. (1)



(a) (b) (c) (d) (e)

Fig. 7: (a) Consider a set of points {x} in an r-dimensional subspace U ⊂ Rd: r = 1, d = 2. (b) Suppose we only see each point on r coordinates;
equivalently, we only see the projection xω of each point x onto its observed coordinates. (c) Can we identify U from the collection of incomplete points
{xω}? (d) The challenge is that given xω , there are infinitely many possibilities of where its complete point x could be, and so (e) each point could be on
any of infinitely many subspaces (here we only depict two).

Then

det

[
σ2
i − λ σiσj

σiσj σ2
j − λ

]
= 0,

and solving for λ:

(σ2
i − λ)(σ2

j − λ)− σ2
i σ

2
j = 0,

we conclude that λ = 0 or λ = σ2
i +σ

2
j . Setting λ = σ2

i +σ
2
j ,

we can rewrite (1) as:

(σ2
i − λ)a+ σiσjb = 0

σiσja+ (σ2
j − λ)b = 0,

or equivalently,

−σ2
j a+ σiσjb = 0

σiσja− σ2
i b = 0.

Given that σi > 0 and σj > 0, we get a = σ1

σ2
and b = 1.

We thus conclude that the leading eigenvector of Σ′ is given
by [σi σj]

T. Notice that ignoring a scaling factor, the leading
eigenvector of Σ′ contains the ith and jth entries of the leading
eigenvector of Σ (because Σ′ = αu′u′T is the minor of Σ =
αuuT containing rows and columns i and j). Since this is true
for every i and j, we conclude that [σ1 σ2 · · · σd]

T is the
eigenvector of Σ, and hence spans U.

Fig. 8: With only one entry per column, we can only estimate the angle to
the canonical axes, but not the direction. Consequently, we can only identify
U up to finite choice. In this figure there are two subspaces, U1 and U2 that
are equally likely to have produced the incomplete data {xω} (gray points).

At this point we know that if x is positive, then U =
span[σ1 σ2 · · · σd]

T. If x is not necessarily positive, then
we cannot know the sign of corr(xi, xj). In other words, we
cannot know whether

Σ′ =

[
σ2
i σiσj

σiσj σ2
j

]
or Σ′ =

[
σ2
i −σiσj

−σiσj σ2
j

]
.

Consequently, the leading eigenvector of Σ′ may be either
[σi σj]

T or [−σi σj]
T, and by extension, the leading

eigenvector of Σ may be any of the vectors in {[±σ1 ±
σ2 · · · ± σd]

T}, as claimed.

The subspace estimation method described by Theorem 1
is summarized in Algorithm 2.

Algorithm 2: Subspace Estimation by Variance
Input: Partially observed data {xω} with ` = 1 entries

per column.
1. Estimate variances:

σ̂2
i =

∑
xω

x2i 1{i∈ω}∑
ω 1{i∈ω}

2. Construct standard deviations vectors:

{û} = {[±σ1 ± σ2 · · · ± σd]
T}

Output: Collection of subspaces {Û} spanned by all
possible directions of {û}.

V. THE APPARENT PARADOX

The importance of Theorem 1 is that it shows that it is
possible to estimate U with as few as ` = 1 samples per
column in {x} (for r = 1). This is somewhat paradoxic,



because if ` ≤ r, then almost every r-dimensional subspace
will agree with {xω}.

To better understand this, recall that xω ∈ R|ω| represents
an incomplete column, observed only in the coordinates in-
dicated in ω ⊂ {1, . . . ,d}. Let V ∈ Rd×r be a basis of an
r-dimensional subspace V, and let Vω ∈ R|ω|×r denote the
restriction of V to the rows in ω. Then V will agree with xω

if and only if there exists a coefficient θ ∈ Rr such that

xω = Vωθ. (2)

Notice that (2) defines a system of ` = |ω| equations and r
variables (the r entries in θ).

If ` > r, (2) becomes a polynomial constraint on V (see
Section 4 in [8] for the details), and so not all subspaces V
will agree with xω . If there are enough columns in XΩ with
` > r samples in the right places, the polynomials produced
by {xω} will be independent, and V = U will be the only
subspace that agrees with {xω}.

However, if ` ≤ r, (2) will always have a solution (as long
as V is in general position), and so any subspace V in general
position will agree with xω . Similarly, if all columns of {xω}
are observed on ` ≤ r entries, any subspace V in general
position will agree with {xω}.

The paradox shown by Theorem 1 is that even though any
subspace V would agree with a matrix {xω} with ` ≤ r
samples per column, we can still have information on the true
subspace U, because it will be more likely than the rest.

VI. SUBSPACE ESTIMATION VS. MATRIX COMPLETION

As we mentioned in Section I, subspace estimation is tightly
related to matrix completion, where one aims to recover a
d× n rank-r matrix X from a subset of its entries, indicated
by Ω ∈ {0, 1}d×n. Once X is recovered, one can compute the
r leading singular vectors of X to obtain a basis for U. On the
other hand, once U is identified, one can potentially complete
XΩ (the observed entries of X) by projecting each column
onto U. More precisely, suppose we have already identified
the subspace U (with basis U) containing the columns of XΩ.
Let xω ∈ R|ω| denote a column of XΩ with ` = |ω| entries,
and Uω ∈ R|ω|×r denotes the restriction of U to the rows in
ω. Since xω agrees with U, there exists a coefficient θ ∈ Rr

such that

xω = Uωθ. (3)

Notice that (3) defines a system of ` = |ω| equations and r
variables (the r entries in θ).

If ` ≥ r and U is in general position, then (3) will always
have a unique solution. In fact, we can solve for θ as

θ = (UT
ωUω)

−1UT
ωxω,

and complete xω as x = Uθ. However, if ` < r, then (3) will
have infinitely many solutions θ, and xω will have infinitely
many completions. Consequently, if any column of XΩ is
observed on ` < r samples, there will be infinitely many rank-r
matrices that agree with XΩ (and lie in U).

In this paper we show that it is possible to estimate the true
subspace U, even if ` ≤ r (implying that there are infinitely
many r-dimensional subspaces V that agree with XΩ; see
Section V). It remains an open question to determine whether
it is possible to estimate the true completion X even if ` < r
for some columns of XΩ (implying that there are infinitely
many rank-r matrices that agree with XΩ).

VII. MORE ABOUT OUR ASSUMPTIONS

Essentially, A1 requires that X is a generic low-rank matrix.
This discards pathological cases, like matrices with identical
columns or exact-zero entries. Examples of these cases could
arise in unnatural, cartoon-like images.

However, A1 allows realistic cases, like natural images.
For instance, backgrounds in natural images can be highly
structured but are not perfectly constant, as there is always
some degree of natural variation that is reasonably modeled by
an absolutely continuous (but possibly highly inhomogeneous)
distribution. For example, the sky in a natural image might
be strongly biased towards blue values, but each sky pixel
will have at least small variations that will make the sky
not perfectly constant blue. So while these are structured
images, these variations make them generic enough so that
our theoretical results are applicable.

Furthermore, because absolutely continuous distributions
may be strongly inhomogeneous, they can be used to represent
highly coherent matrices (that is, matrices whose underlying
subspace is highly aligned with the canonical axes). We point
out that A1 does not imply coherence nor vice-versa. For
example, typical coherence assumptions indeed allow some
identical columns, or exact-zero entries [1]–[6]. However, they
rule-out cases that our theory allows. For example, consider
a case where a few rows of U are drawn i.i.d. N (0, σ2

1) and
many rows of U are drawn i.i.d. N (0, σ2

2), with σ1 � σ2.
This is a good model for some microscopy and astronomical
applications that have a few high-intensity pixels, and many
low-intensity pixels. Such U would yield a highly coherent
matrix, which existing theory and algorithms cannot handle,
while our results can.

To sum up, our assumptions are different, not stronger nor
weaker than the usual coherence assumptions [1]–[6], and
we believe they are also more reasonable in many practical
applications.

VIII. EXPERIMENTS

We now present a series of experiments to support our the-
oretical findings, and analyze the performance of our method
(Algorithm 2). Since there are no other methods that can
handle the case of ` = 1, we cannot compare our method
to existing methods. Thus, we will provide a study on the
convergence rate of our method.

In our experiment we study how accurately can our method
estimate U as a function of the ambient dimension d, the
number of columns n, and the level of noise σ. To this end, we
first generate a vector u ∈ Rd with i.i.d.N (0, 1) entries, to use
as a basis of U. Then we create a coefficient matrix Θ ∈ R1×n
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Fig. 9: Subspace estimation error (average over 100 trials) of our method
(Algorithm 2) as a function of the number of columns n and the signal-
to-noise ratio 1/σ, with ` = 1 sample per column (extreme low sampling
setting). The darkest color represents error = 1 (maximum), and the lightest
represents 0 (the lighter the better).

with i.i.d. N (0, 1) entries, and construct our data matrix
X = uΘ + ε, where ε ∈ Rd×n has i.i.d. N (0, σ2) entries.
Next we generate a sampling matrix Ω ∈ {0, 1}d×n with
exactly ` = 1 nonzero entry per column, selected uniformly
at random. Finally, we use our method to obtain an estimate
of the set {Û}. We repeated this procedure 100 trials, and
recorded the error, measured as the minimum Frobenius norm
of the difference between the projector operators of U and
all those in {Û}. The results are summarized in Figure 9.
Consistent with Theorem 1, we can see that P (U ∈ {Û})→ 1
as n→∞.

IX. DISCUSSION

Theorem 1 shows that it is possible to estimate U (up to
finite choice) with as few as ` = 1 observations per column.
Using less than r entries per column to reconstruct U is
not new. Standard subspace estimation methods involving the
eigenvectors of the covariance matrix had already successfully
reconstructed U with as few as ` = 2 entries per column.
These covariance approaches, combined with our proposed
new method with ` = 1, draw attention to the question
of where does the limit of subspace estimation truly lies.
Conventional theory assumes a limiting bound of ` = r + 1
entries per column for the unique estimation of the subspace.
However, the covariance matrix approach manages to uniquely
estimate the subspace with ` = 2, while here we estimate
the subspace up to finite choice with as few as ` = 1 entry
per column. Just as the covariance method and our proposed
method profit from the estimation of the most likely subspace
(subspace under which the data would have least variance), as
opposed to the best fit, this work leaves the question open as
to whether there exist other estimation criteria (new column
in table I) that permits the unique estimation of U with ` = 1
entry per column.

Finally, the proposed method reconstructs U under the
assumption of uniform samplings. In practice, however, the
sampling in Ω may not be uniformly distributed. For example,
in recommender systems, the items that each user rates tend

Entries per column Best fit subspace Most likely subspace
` = r + 1 unique solution unique solution
2 ≤ ` < r ∞ solutions unique solution
` = 1 ∞ solutions finite solutions

TABLE I: Summary of current subspace inference capabilities.

to be highly correlated (a child is more likely to rate children
movies; some movies are more popular than others, etc.). In
computer vision, the location of objects producing occlusions
will be highly correlated over time. In surveys, people often
cannot or do not want to answer similar questions, and so on.
Our future work will focus on these more general sampling
schemes, and on more efficient estimation techniques that
require fewer data points.
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