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Abstract Recently, there has been an increasing interest in the analysis of flow cy-
tometry data, which involves measurements of a set of surface and functional mark-
ers across hundreds and thousands of cells. These measurements can often be used
to differentiate various cell types and there has been a rapid development of analytic
approaches for achieving this. However, in spite of the fact that measurements are
available on such a large number of cells, there have been very limited advances
in deep learning approaches for the analysis of flow cytometry data. Some prelimi-
nary work has focused on using deep learning techniques to classify cell types based
on the cell protein measurements. In a first of its’ kind study, we propose a novel
deep learning architecture for predicting functional markers in the cells given data
on surface markers. Such an approach is expected to automate the measurement
of functional markers across cell samples, provided data on the surface markers
are available, that has important practical advantages. We validate and compare our
approach with competing machine learning methods using a real flow cytometry
dataset, and showcase the improved prediction performance of the deep learning
architecture.
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1 Introduction

Multiparametric single-cell analysis has advanced our understanding of diverse bi-
ological and pathological processes, providing insights into cellular differentiation,
intracellular signaling cascades and clinical immunophenotyping. Modern flow cy-
tometers typically provide simultaneous single-cell measurements of up to 12 fluo-
rescent parameters in routine cases, and analysis of up to 30 protein parameters has
been recently made commercially available. In addition, a next-generation mass cy-
tometry platform (CyTOF) has become commercially available, which allows rou-
tine measurement of 50 or more protein markers.

Despite the technological advances in acquiring an increasing number of parame-
ters per single cell, approaches for analyzing such complex data lag behind. The ex-
isting approaches are often subjective and labor-intensive. For example, the widely
used gating approach identifies cell types by user-defined sequences of nested 2-D
plots. There have been efforts to develop clustering algorithms (e.g., flowMeans[1],
flowSOM[2], X-shift[3], and dimension reduction algorithms (e.g., SPADE [4],
tSNE[5], Scaffold[6]. However, there is still huge space for developing new methods
to ask new questions in this field.

Recently, deep learning models are revolutionizing the fields of precision medicine,
data mining, astronomy, human-computer interactions, among many others, by be-
coming a major discovery force in science due to the unprecedented accuracy in
prediction. Moreover, deep learning approaches have shown accurate performance
on genomics and biomedical applications[7, 8, 9, 10, 11, 12, 13].

Furthermore, CyTOF data is perfectly suited for deep learning methods. On one
side, identify markers define a cell type (e.g., B cell, T cell, monocytes, MSC), and
on the other side, expressions of functional markers identify the cell’s activity (e.g.,
quiescent, secreting cytokines, proliferating, apoptosis). Since CyTOF technology
allows for the simultaneous measurement of a large number of protein markers, most
CyTOF studies measure both identity markers and functional markers, providing
data for supervised learning tools, like neural networks. In addition, each CyTOF
run typically collects data on 106 cells, creating an ideal large dataset in which the
number of samples (cells) is orders of magnitude larger than the number of variables
(markers). Deep learning methods are particularly suited for this type of big data.

In terms of motivation, there are two main reasons to predict the functional mark-
ers from surface markers in CyTOF data: 1) monetary and time cost, and 2) technical
limit of the total number of markers CyTOF can measure, which is currently around
50 protein markers. That is, if we can accurately predict some functional markers
based on surface markers, there is no longer the need to include those functional
markers in the staining panel (experimental design), and thereby freeing up chan-
nels to measure more surface markers or additional functional markers that cannot
be predicted.

Here, we explore neural network models to predict functional markers (internal
phosphoproteins) with identify markers (cell surface proteins), and compare its per-
formance in terms of accuracy and speed to other standard statistical approaches like
regression, and random forests. We show that neural networks improve prediction
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of functional markers, making them a powerful alternative to the usual regression
techniques.

2 Data

2.1 Pre-processing

The CyTOF dataset has been previously published in [14, 4]. It contains single-cell
data for 5 bone marrow samples from healthy donors. The data for each sample
contains measurements for 31 protein markers for individual cells, including 13 cell
surface markers which are conventionally used to define cell types, as well as 18
functional markers which reflect the signaling activities of cells. The number of cells
per sample is roughly 250,000, and the total number of cells across all 5 samples is
1,223,228. Thus, the data can be expressed in a 1223228×31 matrix.

The data was transformed with inverse hyperbolic sine function (arcsinh with
co-factor of 5), which is the standard transformation for CyTOF data [14].

2.2 Exploratory analysis

We will compare the performance of different methods (explained next section) to
predict the functional markers with the surface markers. The data is highly complex
and correlated, violating some of the fundamental assumptions of standard statistical
approaches (like regression). For example, the data is highly skewed and the pattern
between response and predictor is not linear (see figure 1).
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Fig. 1 Exploratory plots of surface and functional markers. The histograms show a biased pat-
tern, and the scatterplot shows non linearity, both violations of crucial assumptions in standard
regression models.
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3 Materials and Methods

3.1 Background on neural networks

A neural network model is formed by several neurons. Each neuron receives an input
vector x, then weights its components according to the neuron’s weight vector w,
adds a bias constant b, and passes the result through a non-linear activation function
σ . This way, the output of a neuron is given by σ(wT x+b). There are several options
for the activation function σ . Common choices include the sigmoid function σ(z) =

1
1+e−z or the rectified linear unit (ReLU) σ(z) = max(0,z). For the CyTOF data, we
use the hyperbolic tangent as activation function, as it showed better performance
than the sigmoid or ReLU functions (more details on the specific neural network fit
in subsection 3.2).

The final output of the network is given by f̂ (x) with parameters W1, · · · ,WL for
the weight matrices and b1, · · · ,bL for the bias vectors for each layer.

The estimation of the parameters is done through the following optimization

min
{Wl ,bl}Ll=1

n

∑
i=1
‖yi− f̂ (xi)‖2. (1)

The most widely used technique to solve this optimization is through stochastic
gradient descent (SGD) and back-propagation, but we discovered that Adam[15], an
algorithm for first-order gradient-based optimization of stochastic objective func-
tions, based on adaptive estimates of lower-order moments had better performance
for our data (more details in subsection 3.2).

3.2 Methods comparison

We fit a neural network model to predict functional markers from surface markers,
and compare its performance to three classical statistical methods: 1) linear regres-
sion (unpenalized and penalized), 2) decision trees, and 3) random trees. Due to
computational time constraints, we could not fit a support vector regression (SVR)
model. We compared the performance of the four approaches by computing the
mean square error (MSE) of the predicted responses.

To fit the models, we divided the data into training set, validation set and testing
set. The training set was used to fit each of the four models. The validation set was
used to determine the best setup (tuning parameters) of each model in terms of MSE.
Finally, the test set was used to compare the MSE across methods.

The complete data consisted of 1,223,228 cells in 18 functional markers (re-
sponses) and 15 surface markers (predictors), which we divided as follows: 750,000
rows as training set, 250,000 rows as validation set, and 223,228 rows as testing set.
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We used two separate measure of performance: a vector MSE (equation 2) and
individual MSE (equation 3), one per predictor (so, 18 in total).

The vector MSE is defined as

MSEvec =
1

2n

n

∑
i=1
||Ŷi−Yi||22 (2)

where Ŷi ∈ R18 is the predicted vector of responses for individual i, and Yi ∈ R18 is
the observed vector of responses for individual i.

The individual MSE for predictor k is defined as

MSE(k) =
1
2n

n

∑
i=1

(Ŷk,i−Yk,i)
2 (3)

where Ŷk,i ∈ R is the kth predicted response (k = 1, · · · ,18) for individual i, and
Yk,i ∈ R is the kth observed response for individual i.

Neural network model: We tested different network architectures, activation func-
tions, regularization coefficients, solver methods, momentum policies, and learning
rates with 50,000 maximum epochs. The best network has four layers (see figure
2) with 90, 90, 45 and 45 nodes. The network uses hyperbolic tangent as activa-
tion function, regularization coefficient of 0.0001, momentum policy fixed at 0.8,
inverse-decay learning rate policy with base learning rate, gamma and power param-
eters at 0.01, 0.0001, 0.75. We used Adam solver[15], an algorithm for first-order
gradient-based optimization of stochastic objective functions, based on adaptive es-
timates of lower-order moments, instead of Stochastic Gradient Descent (SGD) as
the former showed increased accuracy. All networks were trained using the julia
package Mocha[16, 17].

...
...

Fig. 2 Neural network for predicting functional markers (18 responses) from surface markers (15
predictors) with 4 hidden layers with 90, 90, 45 and 45 nodes each.

Linear regression (unpenalized/penalized): We fit standard linear regression, as
well as the penalized version with LASSO penalty under different penalization pa-
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rameters. We used the ScikitLearn[18] julia wrapper, with default settings. We
noted that the penalized version performed worse than the unpenalized version for
all the predictors (regardless of penalty parameter), so we only present results below
for the unpenalized linear regression model.

Decision tree and random forest regressions: We fit one decision tree regres-
sion per response with ScikitLearn julia wrapper, with default settings. We
compared the performance of the “mse” criterion and the Friedman’s improvement
score, deciding on the former (“mse”) which is the default setting. We did not con-
straint the maximum depth of the tree, and set as 2 the minimum number of samples
required to split an internal node. In addition, we did not constraint the maximum
number of features to consider when looking for the best split. Later, we fit 20 trees
into a random forest regression. We could not explore more than 20 trees due to
computational time constraints.

4 Results

Figure 3 (left) shows the vector MSE (equation 2) across all four different methods,
being decision tree the least accurate and neural network the most accurate. Figure
3 (right) shows a comparison on computation time (in seconds) among the four
methods, being linear regression the fastest and random forest the slowest. To sum
up, the neural network approach outperforms the other three methods in terms of
prediction accuracy, without sacrificing too much computational speed.

Decision Tree

Linear Model

Random Forest

Neural Network
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Random Forest
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Fig. 3 Left: Vector MSE (equation 2) for all four methods sorted from most accurate (neural
network) to least accurate (decision tree). Right: Running time (in seconds) for the training and
validation sets (sample 750,000 rows) for all four methods, sorted from fastest (linear regression)
to slowest (random forest).

Figure 4 shows the individual MSE (equation 3) per response (18 responses in x-
axis) for each of the four methods. Again, the prediction accuracy of neural network
is better than the other three methods for all the 18 predictors.

The MSE performance varies across responses. For example, the first response
(functional marker 141.pPLCgamma2) has an overall MSE lower than other re-
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Fig. 4 Individual MSE (equation 3) for each 18 responses. The neural network outperforms all
other methods across all responses. Lines are drawn simply for visual effect.

sponses like the third (functional marker 152.Ki67), the 8th (functional marker
159.pSTAT3) or the 14th (functional marker 171.pBtk.Itk).

Figure 5 (left) shows the violin plots for these 4 functional markers. We observe
that the 14th response has a wider range and heavier tails than the other responses,
which is confirmed in the scatterplots on the center and right (figure 5). It appears
that the wider spread and higher variability of the 14th response (functional marker
171.pBtk.Itk) causes the lower prediction accuracy compared to other responses,
like the first one (functional marker 141.pPLCgamma2).
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Fig. 5 Left: Violin plot for four functional markers (responses). Horizontal lines represent the 25th
quantile, median and 75th quantile. Center: Predicted vs observed responses on the first functional
marker (141.pPLCgamma2) across all four methods. Left: Predicted vs observed responses on the
14th functional marker (171.pBtk.Itk) across all four methods. The closer the slope to 1 (black
line), the better.

Finally, we present selected scatterplots of surface markers as predictors for the
responses 1,3,8 and 14 (figure 6). We can appreciate in these plots the non-linear
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relationship between the predictors and responses, which justifies the use of a neural
network approach.
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Fig. 6 Scatterplot of selected surface markers (predictors) and selected functional markers (re-
sponses). Left: the first response (functional marker 141.pPLCgamma2) shows a linear relationship
to the predictor (surface marker 115.CD45), which partially explains the better MSE in figure 4.
Right: the 14th response (functional marker 171.pBtk.Itk) shows a non-linear relationship to the
predictor (surface marker 115.CD45), which partially explains the worse MSE in figure 4.

5 Discussion

In this work, we showed that a neural network model outperforms standard sta-
tistical approaches like linear regression and random forest in the prediction of
functional markers from surface markers for CyTOF data. Neural networks were
also faster and more efficient than random forests, which make them a more viable
choice for big datasets.

The improved prediction accuracy of neural networks can be explained by their
flexibility to account for non-linearity or skewness. Unlike regression models, neu-
ral networks do not have linearity or normality assumptions, and they take advan-
tage of the correlation structure among responses by fitting a network for the whole
response vector.

As mentioned already, CyTOF data is perfectly suited for deep learning methods
given the simultaneous measurement of a large number of protein markers, includ-
ing both identity markers and functional markers. Both measurements allow for the
implementation of highly accurate supervised methods, like neural networks. In ad-
dition, the structure of CyTOF data is ideal for deep learning: number of samples
orders of magnitude greater than the number of variables.

The accuracy in the prediction of functional markers from surface markers has
economic and computational advantages, for example, considering the limitation to
the total number of markers CyTOF can measure, which is currently around 50 pro-
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tein markers. Being able to predict functional markers from surface markers could
allow for different types of staining panels which could measure more surface mark-
ers, or focus on functional markers not so easily predicted.

For future work, we can include an extended version of the dataset[14, 4] that
includes 24 healthy sample of bone marrow treated by 24 different drugs. In this
setting, we are interested in predicting the functional markers under different drug
scenarios, using information at baseline (no treatment) and surface markers at dif-
ferent treatment levels. Furthermore, based on the trained deep learning model, we
are interested in the question of whether we can identify cell clusters, and whether
these cell clusters agree with well-accepted cell types in literature. Finally, if we
focus on cells belonging to the same known cell type, and examine the distribution
of functional markers and the correlation with the subtle variations of the identity
markers among cells of this type, we can explore whether there is evidence that the
specific cell type could be further divided into subtypes.
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