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Abstract. In the low-rank matrix completion (LRMC) problem, the low-rank assumption means that the col-4
umns (or rows) of the matrix to be completed are points on a low-dimensional linear algebraic variety.5
This paper extends this thinking to cases where the columns are points on a low-dimensional non-6
linear algebraic variety, a problem we call Low Algebraic Dimension Matrix Completion (LADMC).7
Matrices whose columns belong to a union of subspaces are an important special case. We propose a8
LADMC algorithm that leverages existing LRMC methods on a tensorized representation of the data.9
For example, a second-order tensorized representation is formed by taking the Kronecker product10
of each column with itself, and we consider higher order tensorizations as well. This approach will11
succeed in many cases where traditional LRMC is guaranteed to fail because the data are low-rank in12
the tensorized representation but not in the original representation. We also provide a formal mathe-13
matical justification for the success of our method. In particular, we give bounds of the rank of these14
data in the tensorized representation, and we prove sampling requirements to guarantee uniqueness15
of the solution. We also provide experimental results showing that the new approach outperforms16
existing state-of-the-art methods for matrix completion under a union of subspaces model.17
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1. Introduction. The past decade of research on matrix completion has shown it is pos-20

sible to leverage linear relationships among columns (or rows) of a matrix to impute missing21

values. If each column of a matrix corresponds to a different high-dimensional data point be-22

longing to a low-dimensional linear subspace, then the corresponding matrix is low-rank and23

missing values can be imputed using low-rank matrix completion [4, 5, 35, 36, 19]. These ideas24

continue to impact diverse applications such as recommender systems [22], image inpainting25

[17], computer vision [18], and array signal processing [38], among others.26

The high-level idea of this body of work is that if the data defining the matrix belongs27

to a structure having fewer degrees of freedom than the entire dataset, that structure pro-28

vides redundancy that can be leveraged to complete the matrix. However, the typical linear29

subspace assumption is not always satisfied in practice. Extending matrix completion theory30

and algorithms to exploit low-dimensional nonlinear structure in data will allow missing data31

imputation in a far richer class of problems.32

This paper describes matrix completion in the context of nonlinear algebraic varieties, a33
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polynomial generalization of classical linear subspaces. In this setting, we develop and analyze34

novel algorithms for imputing missing values under an algebraic variety model and derive new35

bounds on the amount of missing data that can be accurately imputed.36

More precisely, let X ∈ Rd×N be a matrix whose columns lie in a low-dimensional algebraic37

variety V ⊂ Rd. Such matrices will be called low algebraic dimension (LAD) matrices. In38

the case where V is a low-dimensional linear variety, i.e., a subspace, this reduces to low-rank39

matrix completion (LRMC). We call the more general problem of completing LAD matrices40

low algebraic dimension matrix completion (LADMC).41

Recently [25] proposed a new LADMC approach based on lifting the problem to a higher-42

dimensional representation (e.g., tensor or polynomial expansions of the columns of X). The43

algorithm in [25] can be interpreted as alternating between LRMC in the lifted representation44

and unlifting this low-rank representation back to the original representation to obtain a45

completion of the original matrix. This approach appears to provide good results in practice,46

but two problems were unresolved:47

• While [25] provides an intuitive explanation for the potential of the approach (based48

on a degrees of freedom argument) and why it may succeed in cases where LRMC49

fails, a rigorous argument is lacking.50

• The unlifting step is highly nonlinear and non-convex, and so little can be proved51

about its accuracy or correctness.52

This paper addresses both issues. We provide sampling conditions in the original represen-53

tation that guarantee uniqueness of the low-rank solution in the lifted (tensorized) represen-54

tation. We also propose a new LADMC algorithm that uses a simple unlifting step based55

on the singular value decomposition (SVD), which is guaranteed to recover the original LAD56

matrix if the LRMC step succeeds. In contrast with [25], the LADMC algorithm proposed57

in this work can be implemented non-iteratively (besides the subroutine used to solve the58

LRMC problem). Experiments show that the new algorithm performs as well or better than59

state-of-the-art methods in the popular case of the union of subspaces model, and outper-60

forms the algorithm proposed in [25] for the same task. We also propose an iterative version61

of the algorithm that alternates between solving LRMC in the tensorized representation and62

unlifting steps, which appears to yield additional empirical improvement.63

1.1. Mathematical Contribution to LADMC. The main mathematical contribution of64

this paper is to generalize the deterministic sampling conditions for low-rank matrix comple-65

tion and subspace clustering with missing entries [28, 29, 30, 31, 32] to the LADMC setting. In66

line with [28], we give conditions guaranteeing the column space of the tensorized data matrix67

is uniquely identifiable from its canonical projections, i.e., projections of the subspace onto68

a collection of canonical basis elements. In particular, assuming a model where we observe69

exactly m entries per column of a data matrix whose columns belong to an algebraic vari-70

ety, our results identify necessary and sufficient values of m for which unique identification of71

the column space of the tensorized matrix is information-theoretically possible (i.e., provided72

there are sufficiently many data columns and the observation patterns are sufficiently diverse).73

To achieve this result, one cannot simply apply known results for the reconstruction of74

linear subspaces from canonical projections such as [28]. The challenge here is that the ob-75

servation patterns (i.e., locations of the observed entries) in the original representation, when76
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TENSOR METHODS FOR NONLINEAR MATRIX COMPLETION 3

tensorized, generate only a small subset of all possible observation patterns in the tensor repre-77

sentation. Hence, the canonical projections that we may observe in the tensor representation78

are a restrictive subset of all possible canonical projections. Our main results show that under79

mild genericity assumptions on the underlying variety, the admissible canonical projections80

in the tensor space are sufficient to identify the subspace in the tensorized representation.81

Furthermore, we derive precise information theoretic bounds on how many missing entries82

can be tolerated in terms of the dimension of the subspace in the tensorized representation.83

1.2. Related Work. Unions of subspaces (UoS) are a special case of algebraic varieties84

[25, 42], and a number of approaches to matrix completion for a UoS model have been proposed85

[37, 1, 30, 2, 33, 46, 26, 44, 27, 11, 13]; see [20] for classification and comparison of these86

approaches for the task of subspace clustering with missing data. Most these algorithms87

involve iterating between subspace clustering and completion steps, and relatively little can be88

guaranteed about their performance. Exceptions include [1] and [13], which give performance89

guarantees for algorithms based on a non-iterative neighborhood search procedure. Also,90

recent work [8, 40] gives performance guarantees for a version of the sparse subspace clustering91

algorithm modified to handle missing data [46].92

Our proposed LADMC approach is closely related to algebraic subspace clustering (ASC),93

also known as generalized principal component analysis [42, 45, 23, 39, 41]. Similar to our94

approach, the ASC framework models unions of subspaces as an algebraic variety, and makes95

use of tensorizations (i.e., Veronese embeddings) of the data to identify the subspaces. How-96

ever, the ASC framework has not been extended to the matrix completion setting, which is97

the main focus of this work.98

A preliminary version of this work was published in a conference proceedings [34]. We99

extend the theory and algorithms in [34] to higher order tensorizations of the data matrix;100

[34] only considered quadratic tensorizations. We also correct several issues with the theory101

in [34]. In particular, parts (i) and (ii) of Theorem 2 of [34] are incorrect as stated; in this102

work we correct this result and also extend it to higher order tensorizations (see Corollary 1).103

Additionally, the proof of part (iii) of Theorem 2 in [34] is incorrect; here we give a correct proof104

and likewise extend the result to higher order tensorizations (see Corollary 2). Finally, we105

also expand the experiments section by comparing the proposed LADMC algorithm with the106

previously proposed VMC algorithm [25], and demonstrate the proposed LADMC algorithm107

for matrix completion of real data.108

2. Setup and Algorithm. Suppose we observe a subset of the entries of a matrix

X = [x1, ...,xN] ∈ Rd×N

at locations indicated by ones in the binary matrix Ω = [ω1, ...,ωN] ∈ {0, 1}d×N. We refer to109

Ω and ωi as the matrix and vector observation patterns, respectively.110

In traditional low-rank matrix completion one assumes X is low-rank in order to recover
the missing entries. We take a different approach in this work. Rather than completing X
directly, we consider low-rank completing the tensorized matrix

X⊗p := [x⊗p1 , ...,x⊗pN ] ∈ RD×N.
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Here x⊗p denotes the p-fold tensorization of a vector x, defined as x⊗p := x⊗ · · · ⊗ x where111

⊗ is the Kronecker product, and x appears p times in the expression. Every tensorized112

vector x⊗p can be reordered into a pth-order symmetric tensor that is uniquely determined by113

D :=
(
d+p−1

p

)
of its entries. For example, the vector x⊗2 has the same entries as the matrix114

xxT ∈ Rd×d, which is uniquely determined by its
(
d+1
2

)
upper triangular entries. Hence, with115

slight abuse of notation, we consider tensorized vectors x⊗p as elements of RD.116

Additionally, given partial observations of matrix X at locations in Ω we can synthesize117

observations of the tensorized matrix X⊗p at all locations indicated by Ω⊗p = [ω⊗p1 , ...,ω⊗pN ] ∈118

{0, 1}D×N simply by multiplying the observed entries of X. In particular, if the data column119

xi is observed in m locations, then the tensorized data column x⊗pi can be observed at
(
m+p−1

p

)
120

locations indicated by ones in the binary vector ω⊗pi . We refer to Ω⊗p and ω⊗pi as the matrix121

and vector tensorized observation patterns, respectively.122

Remarkably, there are situations where the original data matrix X is full rank, but the123

tensorized matrix X⊗p is low-rank, owing to (nonlinear) algebraic structure of the data, de-124

scribed in more detail below. In these situations, X⊗p can potentially be recovered from its125

entries indicated by Ω⊗p using standard low-rank matrix completion algorithms.126

If the LRMC step recovers X⊗p correctly, then we can uniquely recover X from X⊗p. To127

see this, first consider the case of a quadratic tensorization (p = 2). Let Y = [y1, ...,yN] be128

the output from LRMC applied to the tensorized matrix. If the completion is correct, then129

yi = x⊗2i , and we can reshape yi into the rank-1 symmetric d× d matrix Yi = xix
T
i . Hence,130

we can recover xi by the computing the leading eigenvalue-eigenvector pair (λi,ui) of Yi and131

setting xi = ±
√
λiui, where we determine the sign by matching it to the observed entries of xi.132

For higher-order tensorizations (p ≥ 3), we can recover xi from yi using a similar procedure:133

we reshape yi into a d× dp−1 and take its rank-one truncated SVD.134

These observations motivate our proposed algorithm, Low Algebraic Dimension Matrix135

Completion (LADMC), summarized below in Algorithm 2.1.136

Algorithm 2.1 Low Algebraic Dimension Matrix Completion (LADMC).

Input: Subset of entries of data matrix X.
Tensorize: Form new matrix X⊗p by replacing each column xi with its p-fold tensor product
x⊗pi (with missing entries corresponding to any products involving missing entries in xi).
LRMC: Let Y = [y1, ...,yN] be the low-rank completion of X⊗p.
De-tensorize: Compute the best rank-one symmetric tensor approximation x̂⊗pi of each
column yi of Y such that x̂i matches the observed entries of xi.
Output: Completed matrix X̂ whose ith column is x̂i.

2.1. Algebraic variety models and rank of the tensorized matrix. Here we describe in137

more detail the algebraic assumptions that are required for the tensorized data matrix X⊗p138

to be low-rank.139

Suppose X⊗p ∈ RD×N is a wide matrix, i.e., the number of data columns N exceeds the140

tensor space dimension D. Then X⊗p is rank-deficient if and only if the rows of X⊗p are141

linearly dependent, in which case there exists a vector v ∈ RD such that vTx⊗pi = 0 for all142

columns xi of X. In other words, the columns xi belong to the zero set of the polynomial143
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TENSOR METHODS FOR NONLINEAR MATRIX COMPLETION 5

q(x) = vTx⊗p. Hence, we have shown the following:144

Proposition 1. The tensorized matrix X⊗p ∈ RD×N with N ≥ D is rank deficient if and145

only if the columns of X belong to an algebraic variety, i.e., the common zero set of a collection146

of polynomials.147

In particular, we focus on the class of varieties defined by homogeneous polynomials1. A148

degree-p homogeneous polynomial is any polynomial of the form q(x) = vTx⊗p, for some149

vector of coefficients v ∈ RD.150

Definition 1. A set V ⊂ Rd is a (real) projective variety2 if there exists homogeneous
polynomials q1, ..., qn (with possibly different degrees) such that

V = {x ∈ Rd : q1(x) = · · · = qn(x) = 0}.

An important fact for this work is that a union of subspaces is a projective variety, as151

shown in the following example.152

Example 1 (Unions of subspaces are projective varieties). Suppose U and W are subspaces153

of Rd. Then the union of the two subspaces V := U ∪W is given by the common zero set154

of the collection of quadratic forms qi,j(x) = (xTu⊥i )(xTw⊥j ), where {u⊥i } is a basis of the155

orthogonal complement of U and {w⊥j } is a basis of the orthogonal complement of W. Hence156

V is a projective variety determined by the common zero set of a collection of quadratic forms.157

More generally, a union of K distinct subspaces is a projective variety defined by a collection158

of degree K polynomials, each of which is a product of K linear factors; this fact forms the159

foundation of algebraic subspace clustering methods [23, 43].160

Given a matrix whose columns are points belonging to a projective variety, the rank of the161

associated tensorized matrix is directly related to the dimension of the associated tensorized162

subspace, defined as follows:163

Definition 2. Let V ⊂ Rd be a projective variety. We define the pth-order tensorized sub-164

space associated with V by165

(2.1) S := span{x⊗p : x ∈ V} ⊂ RD
166

i.e., the linear span of all pth-order tensorized vectors belonging to V.167

If the columns of a matrix X belong to a projective variety V, then the column space of168

the tensorized matrix X⊗p belongs to the tensorized subspace S, and so the dimension of the169

tensorized subspace is an upper bound on the rank of the tensorized matrix. In particular, if170

there are a total of L linearly independent degree p homogeneous polynomials vanishing on171

V then S is a subspace of RD of dimension at most D− L. Therefore, if there are sufficiently172

many such polynomials then S is a low-dimensional subspace, and hence X⊗p is low-rank.173

1Our approach extends to varieties defined by inhomogenous polynomials if we redefine x⊗p to be the map
x 7→ [ 1

x ]⊗p, i.e., augment x with a 1 before tensorization.
2For any homogeneous polynomial q we have q(x) = 0 if and only if q(λx) = 0 for any scalar λ 6= 0. This

means the zero sets of homogeneous polynomials can be considered as subsets of projective space, i.e., the set
of all lines through the origin in Rd, and this is the source of the term “projective variety”. For simplicity, we
typically consider projective varieties as subsets of Euclidean space Rd, unless otherwise noted.
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For example, consider the special case of a union of subspaces. The linear span of all points174

belonging to a union of K, r-dimensional subspaces (in general position) defines a subspace175

of dimension min{Kr,d} in Rd. However, in the tensor space these points lie in a subspace of176

RD whose dimension relative to the tensor space dimension is potentially smaller, as shown177

in the following lemma.178

Lemma 1. Let V ⊂ Rd be a union of K subspaces of each of dimension r, and let S ⊂ RD179

be its pth-order tensorized subspace. Then S is R-dimensional where180

(2.2) R ≤ min
{

K
(
r+p−1

p

)
,D
}
.181

The proof of Lemma 1 is elementary: any r-dimensional subspace in Rd spans a
(
r+p−1

p

)
-182

dimensional subspace in the tensor space, and so points belonging a union of K, r-dimensional183

subspaces spans at most a K
(
r+p−1

p

)
-dimensional subspace in the tensor space.184

Informed by Lemma 1, the basic intuition for LADMC for UoS data is this: Assuming185

we need O(R) observations per column to complete a rank-R matrix, completing a matrix186

whose columns belong to union of K, r-dimensional subspaces in the original space would187

require O(Kr) observations per column, but completing the corresponding tensorized matrix188

would require O(K
(
r+p−1

p

)
) entries (products) per column, which translates to O(K1/pr) en-189

tries per column in the original matrix. This suggests LADMC could succeed with far fewer190

observations per column than LRMC (i.e., O(K1/pr) versus O(Kr)) in the case of UoS data.191

In fact, Lemma 1 is a special case of a more general bound due to [7] that holds for any192

equidimensional projective variety3. Roughly speaking, a projective variety is equidimensional193

if the local dimension of the variety (treated as a smooth manifold) is everywhere the same.194

The bound in [7] is posed in terms of the degree and dimension of the variety (see, e.g., [9] for195

definitions of these quantities). Translated to our setting, this result says if V is a equidimen-196

sional projective variety of degree K and dimension r, then its pth order tensorized subspace197

is R-dimensional where R obeys the same bound as in (2.2). Therefore, given a matrix whose198

columns belong to an equidimensional projective variety, we should expect that LADMC will199

succeed with O(K1/pr) observations per column, where now K is the degree of the variety200

and r is its dimension. In other words, we expect LADMC will succeed in the case of data201

belonging to a projective variety with high degree and low dimension.202

3. Theory.203

3.1. Limitations of prior theory. Algorithm 2.1 is primarily inspired by the ideas in [25].204

In [25], an informal argument is given for the minimum number of observed entries per data205

column necessary for successful completion of a tensorized matrix based on the dimension206

of the corresponding tensorized subspace. Translated to the setting of this paper, the claim207

made in [25] is that in order to successfully complete a matrix X whose pth-order tensorized208

matrix X⊗p is rank R, we must observe at least m0 entries per column of X, where m0 is the209

3The result in [7] gives an upper bound on the values of the Hilbert function associated with any homoge-
neous unmixed radical ideal I ⊂ k[x0, ..., xd] over a perfect field k. We specialize this result to the vanishing
ideal of an equidimensional variety in real projective space. In particular, the dimension of the pth-order
tensorized subspace coincides with the Hilbert function of the vanishing ideal evaluated at degree p.
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smallest integer such that210

(3.1)
(
m0+p−1

p

)
> R,211

i.e., unique low-rank completion ought to be possible when the number of observations per212

column of the tensorized matrix exceeds its rank. This conjecture was based on the fact that213

R + 1 is the necessary minimum number of observations per column to uniquely complete214

a matrix whose columns belong to a R-dimensional subspace in general position [31]. Addi-215

tionally, R + 1 observations per column is sufficient for unique completion assuming there are216

sufficiently many data columns and the observation patterns are sufficiently diverse [29].217

However, there are two key technical issues not considered in [25] that prevent the ar-218

gument above from being rigorous. One is related to the fact that the patterns of missing219

entries in the tensorized matrix are highly structured due to the tensor product. Consequently,220

the set of realizable observation patterns in the tensorized matrix is severely limited. These221

constraints on the observation patterns imply that existing LRMC theory (which typically222

requires uniform random observations) does not apply directly to tensorized representations.223

The other technical issue not considered by [25] is that the tensorized subspace (i.e., the224

column space of the tensorized matrix) is not always in general position as a subspace of225

RD. For example, if an R-dimensional subspace is in general position then the restriction of226

the subspace to any subset of R canonical coordinates is R-dimensional (i.e., if B ∈ RD×R is227

any basis matrix for the subspace, then all R× R minors of B are non-vanishing). However,228

generally this property does not hold for tensorized subspaces arising from union of subspaces,229

even if the subspaces in the union are in general position (see Example 3 below). General230

position assumptions are essential to results that describe deterministic conditions on the231

observation patterns allowing for LRMC [28, 30]. Hence, the direct application of these232

results to the LADMC setting is not possible.233

For these reasons it was unclear whether unique completion via LADMC was information-234

theoretically possible. In fact, we prove there are cases where condition (3.1) is satisfied, but235

where X⊗p cannot be completed uniquely using LRMC, even with an unlimited amount of236

data (see Example 2 below). In the remainder of this section we derive necessary and sufficient237

conditions under which unique completion via LADMC is possible, and compare these with238

condition (3.1).239

3.2. Unique identifiability of the tensorized subspace. To simplify our results, we con-240

sider a sampling model in which we observe exactly m entries per column of the original241

matrix. The main theoretical question we address in this work is the following:242

Question 1. What is the minimum number of observations per column, m, of the original243

matrix for which unique completion is information-theoretically possible with Algorithm 2.1?244

Rather than study Question 1 directly, we will study the more basic problem of the unique245

identifiability of the tensorized subspace (i.e., the column space of the tensorized matrix) from246

its projections onto subsets of canonical coordinates. This is related to Question 1 as follows:247

Suppose that we observe multiple columns of the original matrix X with the same observation248

pattern. Then we will observe the corresponding columns of the tensorized matrix X⊗p with249

the same tensorized observation pattern. Hence, given sufficiently many columns that are in250
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general position, we can compute a basis of the projection of the tensorized subspace onto251

coordinates specified by the tensorized observation pattern. This means that given sufficiently252

many data columns observed with observation patterns of our choosing, we could in principle253

compute any projection of the tensorized subspace onto coordinates specified by any tensorized254

observation pattern. Hence, we consider instead the following closely related question:255

Question 2. What is the minimum value of m for which the tensorized subspace is uniquely256

identifiable from its projections onto all possible tensorized observation patterns arising from257

a sampling of m entries per column in the original domain?258

To more precisely describe what we mean by unique identifiability of the tensorized sub-259

space in Question 2, we introduce the following notation and definitions.260

For any observation pattern ω ∈ {0, 1}d we let |ω| denote the total number of ones in ω.261

We say the tensorized observation pattern υ = ω⊗p is of size m if |ω| = m. Note that if υ262

is a tensorized observation pattern of size m, then υ has
(
m+p−1

p

)
ones, i.e., |υ| =

(
m+p−1

p

)
.263

For any observation pattern υ ∈ {0, 1}D and any vector y ∈ RD let yυ ∈ R|υ| denote the264

restriction of y to coordinates indicated by ones in υ. Likewise, for any subspace S ⊂ RD265

we let Sυ ⊂ R|υ| denote the subspace obtained by restricting all vectors in S to coordinates266

indicated by ones in υ, and call Sυ the canonical projection of S onto υ. For any subspace267

S ⊂ RD and any observation pattern matrix Υ = [υ1 . . . υn] ⊂ {0, 1}D×n we define S(S,Υ)268

to be the set of all subspaces S′ whose canonical projections onto observation patterns in Υ269

agree with those of S, i.e., all S′ such that S′υi
= Sυi for all i = 1, . . . ,n. We say a subspace S270

is uniquely identifiable from its canonical projections in Υ if S(S,Υ) = {S}.271

To aid in determining whether a subspace is uniquely identifiable from a collection of272

canonical projections, we introduce the constraint matrix A = A(S,Υ), defined below.273

Definition 3. Given a subspace S ⊂ RD and observation pattern matrix Υ = [υ1, ...,υn] ∈274

{0, 1}D×n, define the constraint matrix A ∈ RD×T as follows: for all i = 1, ...,n suppose275

Mi := |υi| is strictly greater than R′i := dim Sυi, and let Aυi ∈ RMi×(Mi−R′i) denote a basis276

matrix for (Sυi)
⊥ ⊂ RMi, the orthogonal complement of the canonical projection of S onto277

υi, so that ker AT
υi

= Sυi. Define Ai ∈ RD×Ni to be the matrix whose restriction to the rows278

indexed by υi is equal to Aυi and whose restriction to rows not in υi is all zeros. Finally, set279

A = [A1 . . . An], which has a total of T =
∑n

i=1(Mi − R′i) columns.280

The intuition here is that the orthogonal complement of each Sυi constrains the set of281

subspaces consistent with the observed projections, and A reflects the collection of these282

constraints across all n observation patterns. The following result shows that unique identi-283

fiability of a subspace from its canonical projections is equivalent to a rank condition on the284

corresponding constraint matrix:285

Lemma 2. An R-dimensional subspace S is uniquely identifiable from canonical projections286

in Υ if and only if dim ker AT = R, in which case S = ker AT.287

Proof. By construction, S′ ∈ S(S,Υ) if and only if S′υi
= Sυi = ker AT

υi
for all i = 1, ...,n288

if and only if S′ ∈ ker AT. Hence, the set S(S,Υ) coincides with all R-dimensional subspaces289

contained in ker AT. In particular, we always have S ⊂ ker AT and by linearity, span{x ∈ S :290

S ∈ S(S,Υ)} = ker AT. Hence, if dim ker AT = R it must be the case that ker AT = S.291
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Remark 1. Lemma 2 gives an empirical criterion for determining whether a subspace is292

uniquely identifiable: given canonical projections of a subspace S, one can construct the con-293

straint matrix A above and numerically check if the dimension of the null space of AT agrees294

with the subspace dimension R, if it is known. We will use this fact to explore the possibil-295

ity of unique identifiability of tensorized subspaces arising from unions of subspaces of small296

dimensions (see Table 1).297

3.3. Generic unions of subspaces. We are particularly interested in understanding Ques-298

tion 2 in the context of tensorized subspaces arising from a union of subspaces (UoS), i.e., va-299

rieties of the form V = ∪Kk=1Uk, where each Uk ⊂ Rd is a linear subspace. To simplify our300

results, we will focus on UoS where each subspace in the union has the same dimension r. We301

will also often make the assumption that the UoS is generic. More precisely, we say V is a302

generic union of K r-dimensional subspaces in Rd if the collection of subspaces (U1, ...,UK)303

making up the union belong to an (often unspecified) open dense subset of the product space304

G(r,Rd)× · · · ×G(r,Rd), where G(r,Rd) denotes the Grassmannian of all r-dimensional sub-305

spaces in Rd. In particular, if a result holds for a generic union of K r-dimensional subspaces in306

Rd, then it holds with probability 1 for a union of K random subspaces drawn independently307

from any absolutely continuous probability distribution on the Grassmannian G(r,Rd).308

We will repeatedly make use of the following facts regarding generic UoS (see, e.g., [45]):309

Proposition 2. Let S be the pth order tensorized subspace arising from a generic union of310

K r-dimensional subspaces in Rd. Then R(d,K, r,p) := dim S is a constant that depends only311

on d,K, r, p.312

Treated as a function of p, the quantity R(d,K, r, p) is called the Hilbert function of a generic313

UoS (also called a “generic subspace arrangement”), and is studied in [45, 6, 10].314

3.4. Necessary conditions for unique identifiability of tensorized subspaces. Lemma 2315

implies a general necessary condition for unique identifiability of an R-dimensional tensorized316

subspace S ⊂ RD: in order for dim ker AT = R the number of columns A needs to be at least317

D−R, simply by considering matrix dimensions. This immediately gives the following result.318

Lemma 3. Let V ⊂ Rd be a projective variety whose pth-order tensorized subspace S ⊂ RD319

is R-dimensional. Suppose we observe canonical projections of S onto n unique tensorized320

observation patterns Υ = [υi, ...,υn] ⊂ {0, 1}D×n. For all i = 1, ..., n define Mi := |υi| and321

R′i := dim Sυi. Then a necessary condition for S to be uniquely identifiable is322

(3.2)
n∑

i=1

(Mi − R′i) ≥ D− R.323

Lemma 3 has several implications regarding the necessary sample complexity for tensorized324

subspaces arising from a union of subspaces. Consider the case where S is the pth-order325

tensorized subspace corresponding to a generic union of K subspaces of dimension r. Suppose326

Υ consists of all
(
d
m

)
tensorized observation patterns of size m, i.e., each column υi of Υ has327

M =
(
m+p−1

p

)
ones. From Lemma 2 we know that dim Sυi = R′ where R′ ≤ R ≤ K

(
r+p−1

p

)
and328

where the value of R′ is the same for all tensorized observation patterns υi by genericity. This329

means the constraint matrix has a total of
(
d
m

)
(M − R′) columns, which gives the following330

necessary condition for unique identifiability of tensorized subspaces arising from generic UoS:331
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Corollary 1. Let V ⊂ Rd be a generic union of K r-dimensional subspaces. Suppose its332

pth-order tensorized subspace S ⊂ RD is R-dimensional. Let R′ ≤ R be the dimension of S333

projected onto any tensorized observation pattern of size m. Then a necessary condition for S334

to be uniquely identifiable from its canonical projections onto all possible tensorized observation335

patterns of size m is336

(3.3)
(
d
m

)
(M− R′) ≥ D− R.337

where M =
(
m+p−1

p

)
and D =

(
d+p−1

p

)
.338

Immediately from (3.3), we see that a simpler, but weaker, necessary condition for unique339

identifiability is M > R′, which is independent of the ambient dimension d. In fact, assuming340

m > p and the ambient dimension d is sufficiently large, then the condition in (3.3) reduces341

to M > R′. To see this, observe that
(
d
m

)
= O(dm) and D =

(
d+p−1

p

)
= O(dp) and so342

(D−R)/
(
d
m

)
< 1 for large enough d. Hence, in this case (3.3) reduces to M > R′. In the event343

that R′ = R, this further reduces to the condition m ≥ m0 given in (3.1), the rate conjectured344

to be necessary and sufficient in [25].345

However, the following two examples show that when some of the above assumptions are346

violated (e.g., when m ≤ p or R′ < R) the condition given in (3.1) is neither necessary nor347

sufficient for unique recovery of the tensorized subspace.348

Example 2. Suppose V is a generic union of two 1-D subspaces under a quadratic ten-349

sorization (K = 2, r = 1,p = 2). Suppose we consider all tensorized observation patterns of350

size m = 2. In this case we have M = 3 > 2 = R′ = R, which satisfies the condition (3.1).351

Yet, the necessary condition (3.3) is violated in all ambient dimensions d ≥ 3 since352

(3.4)
(
d
2

)
· 1︸︷︷︸
M−R′

<
(
d+1
2

)︸ ︷︷ ︸
D

− 2︸︷︷︸
R

.353

Hence, unique identifiability of the tensorized subspace is impossible in this case, which shows354

condition (3.1) is not sufficient. However, if we increase the number of observations per355

column to m = 3, it is easy to show the necessary condition (3.3) is always met in dimensions356

d ≥ 4, and experimentally we find that the sufficient condition dim ker AT = R of Lemma 2357

is also met (see Table 1).358

Example 3. Suppose V is a generic union of two 2-D subspaces under a quadratic ten-359

sorization in 4-dimensional ambient space (K = 2, r = 2,p = 2, d = 4). Suppose we consider360

all observation patterns of size m = 3. In this case M = 6 = R, which violates condition (3.1).361

However, we have R′ = 5 since the canonical projection of the tensorized subspace onto a362

tensorized observation pattern of size m = 3 has the same dimension as a tensorized subspace363

arising from a generic union of two 2-D subspaces in R3, which has dimension 5. Hence, the364

necessary condition (3.3) is satisfied:365

(3.5) 4 =
(
4
3

)
· 1︸︷︷︸
M−R′

=
(
5
2

)︸︷︷︸
D

− 6︸︷︷︸
R

= 4.366

This shows that unique identificaiton of the tensorized subspace may still be possible in this367

case. In the supplementary materials we prove that the sufficient condition dim ker AT = R368
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of Lemma 2 holds in this case, which shows the tensorized subspace is uniquely identifiable.369

Therefore, condition (3.1) is not always necessary.370

2nd order tensorization (p = 2)

smallest m s.t.
(
m+1
2

)
> R

K\r 1 2 3 4 5

1 2 3 4 5 6
2 2 4 5 6 8
3 3 4 6 8 10
4 3 5 7 9 11
5 3 6 8 10 12

smallest m s.t. (3.3) holds

K\r 1 2 3 4 5

1 2 3 4 5 6
2 3 3 4 5 6
3 3 4 6 7 9
4 3 5 7 9 11
5 3 6 8 10 12

smallest m s.t. dim kerAT = R

K\r 1 2 3 4 5

1 2 3 4 5 6
2 3 3 4 5 6
3 3 4 6 7 9
4 3 5 7 9 11
5 3 6 8 10 12

3rd order tensorization (p = 3)

smallest m s.t.
(
m+2
3

)
> R

K\r 1 2 3 4 5 6

1 2 3 4 5 6 7
2 2 3 5 6 7 8
3 2 4 5 7 8 10
4 3 4 6 7 9 11
5 3 5 6 8 10 11
6 3 5 7 9 10 12
7 3 5 7 9 11 12

smallest m s.t. (3.3) holds

K\r 1 2 3 4 5 6

1 3 3 4 5 6 7
2 3 3 4 5 6 7
3 3 4 4 5 6 7
4 3 4 5 7 8 9
5 3 5 6 8 10 11
6 3 5 7 9 10 12
7 3 5 7 9 11 12

smallest m s.t. dim kerAT = R

K\r 1 2 3 4 5 6

1 3 3 4 5 6 7
2 3 3 4 5 6 7
3 3 4 4 5 6 7
4 3 4 5 7 8 9
5 3 5 6 8 10 11
6 3 5 7 9 10 12
7 3 5 7 9 11 12

Table 1: Evidence that necessary condition (3.3) is also sufficient for unique identification
of tensorized subspaces. Here we identify the minimal value of m for which the tensorized subspace
arising from a union of K, r-dimensional generic subspaces is uniquely identifiable from its canonical
projections onto all possible tensorized observations patterns of size m. The left-most table gives the
smallest value of m satisfying condition (3.1) that was conjectured to be necessary and sufficient in
[25]. The middle table reports the smallest value of m satisfying the necessary condition (3.3). The
right-most table reports the smallest value of m satisfying the sufficient condition ker AT = R given
in Lemma 2, which is verified numerically by constructing the constraint matrix A from a randomly
drawn UoS. The middle and right-most tables are the same, showing the necessary condition (3.3)
is also sufficient in these cases. In the left-most tables, red boxes indicate values less than the true
necessary and sufficient m, and yellow indicates values more than the true necessary and sufficient m,
illustrating the shortcomings of previous theory that have been addressed in this paper.

A natural question is whether the necessary condition in Corollary 1 is also sufficient,371

i.e., if (3.3) holds do we have unique identifiability of the tensorized subspace? Table 1 shows372

the results of numerical experiments that suggest this is indeed the case. In particular, we373

generated a generic UoS in ambient dimension d = 12 for a varying number of subspaces and374

their dimension, computed their tensorized subspace, and constructed the constraint matrix A375

from all possible canonical projections of the tensorized subspace onto tensorized observation376

patterns of size m. Then we searched for the minimal value of m for which the necessary377

and sufficient condition dim ker AT = R given in Lemma 2 holds4. We compare this with the378

4If the condition kerAT = R holds for one random realization of a union of K r-dimensional subspaces,
then it holds generically since the condition kerAT = R can be recast as a polynomial system of equations in

This manuscript is for review purposes only.
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minimum value of m for which the necessary condition (3.3) holds, and we found they agree379

in all cases considered.380

Given the strong numerical evidence, we conjecture that the necessary condition (3.3) is381

also sufficient. While we do not prove this conjecture in this work, in the next section we382

give a sufficient condition that is only slightly stronger than the necessary condition (3.3) and383

orderwise optimal in terms the number of subspaces and their dimension in many cases.384

3.5. Sufficient conditions for unique identifiability of tensorized subspaces. This section385

presents a sufficient condition for unique identifiability of the tensorized subspace. First, we386

state a result that holds for general projective varieties and then specialize to the case of UoS.387

Theorem 1. Let V ⊂ Rd be a projective variety whose pth-order tensorized subspace S is388

R-dimensional. Suppose there exists a tensorized observation pattern υ = ω⊗p such that389

|υ| > R and dim Sυ = R. Then S is uniquely identifiable from its canonical projections onto390

all possible tensorized observation patterns of size m ≥ |ω|+ p.391

We give the proof of Theorem 1 in Appendix A. Roughly speaking, Theorem 1 says that a392

sampling rate of m ≥ |ω|+ p (i.e., m observed entries per data column of the original matrix)393

is sufficient to ensure unique LADMC is information-theoretically possible (given sufficiently394

many columns and sufficiently diverse observation patterns). Note that Theorem 1 does not395

make any general position assumptions about the tensorized subspace.396

By specializing to the case of tensorized subspaces generated by generic UoS, we are397

able to more explicitly characterize the sampling rate appearing in Theorem 1. Consider the398

tensorized subspace S of a generic union of K r-dimensional subspaces V ⊂ Rd. Recall that399

we define R(d,K, r,p) = dim S , i.e., the dimension of the tensorized subspace depends only400

on d,K, r, p (see Proposition 2). Now, given any tensorized observation pattern υ = ω⊗p of401

size m∗, observe that Sυ is equal to the tensorized subspace arising from Vω ⊂ Rm∗ , the UoS402

restricted to the m∗ coordinates specified by ω. Provided m∗ > r, Vω is again a generic union403

of K r-dimensional subspaces except now in m∗-dimensional ambient space. Hence, Sυ has404

the same dimension as the tensorized subspace arising from a generic UoS in m∗-dimensional405

ambient space, and so we have dim Sυ = R(m∗,K, r, p) for any tensorized observation pattern406

υ of size m∗ > r. This fact combined with Theorem 1 gives the following immediate corollary.407

Corollary 2. Let V ⊂ Rd be a generic union of K r-dimensional subspaces and let S ⊂ RD408

be its pth-order tensorized subspace. Assume m∗ is such that r < m∗ ≤ d and R(m∗,K, r, p) =409

R(d,K, r,p). Then S is uniquely identifiable from its canonical projections onto all possible410

tensorized observation patterns of size m ≥ m∗ + p.411

The key assumption made in Corollary 2 is that R(m∗,K, r, p) = R(d,K, r, p). Character-412

izing the set of values for which this condition holds in all generality appears to be a difficult413

problem (see, e.g., [6]). However, using existing results [15, 10, 6] that characterize exact414

values of R(d,K, r, p) we can establish the following special cases:415

Proposition 3. Let m0 be the smallest integer such that
(
m0+p−1

p

)
> K

(
r+p−1

p

)
and set416

m∗ = max{m0, 2r}. Then R(m∗,K, r, p) = K
(
r+p−1

p

)
= R(d,K, r, p) in the following cases:417

(a) p = 2, for any K, for any r ( i.e., any generic UoS under a quadratic tensorization)418

terms of the entries of a collection of basis matrices for each subspace in the UoS.
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(b) p ≥ 3, for any K, and r = 1 or 2 ( i.e., any generic union of 1-D subspaces, or any419

generic union of 2-D subspaces, under any higher order tensorization)420

(c) p ≥ 3, K ≤ p, for any r ( i.e., any generic UoS consisting of at most p, r-dimensional421

subspaces under a pth-order tensorization)422

Case (a) is due to [6, Theorem 3.2], case (b) is due to [15], and case (c) is due to [10, Corollary423

4.8] (see also [23, Corollary 2.16]).424

The quantity m0 defined in Proposition 3 is O(K1/pr), hence so is m∗ = max{2r,m0}.425

Therefore, Proposition 3 combined with Corollary 2 shows that a sampling rate of m =426

O(K1/pr + p) is sufficient for unique identifiability of the tensorized subspace arising from a427

generic union of K subspaces of dimension r (under one of the assumptions (a)-(c) in Corollary428

2). When m∗ ≥ 2r, the sampling rate identified in Corollary 2 is only slightly more than the429

minimal sampling rate m0 given in (3.1) conjectured to be necessary and sufficient for unique430

identifiability in [25]. Specifically, in this case the sampling rate in Corollary 2 is m ≥ m0 + p.431

By the discussion following Corollary 1, this rate is also necessary provided m0 > p and432

provided the ambient dimension d is sufficiently large. Hence, in these cases, there is only433

a gap of up to p observations per column between our necessary and sufficient conditions434

(i.e., m ≥ m0 versus m ≥ m0 + p).435

In general, we conjecture the value of m∗ as defined in Proposition 3 is always sufficient to436

ensure R(m∗,K, r,p) = R(d,K, r,p) for higher order tensorizations p ≥ 3. While proving this437

may be difficult, this condition can also be checked numerically by sampling sufficiently many438

points from a randomly generated UoS with the specified parameters and computing the rank439

of tensorized matrix. However, we reiterate that empirical evidence leads us to believe the440

necessary sampling rate for UoS identified in Corollary 1 is also sufficient, which generally is441

less than the rate given in Corollary 2.442

3.6. Implications for LADMC.443

3.6.1. Sample complexity. The above results are stated in terms of the unique identifica-444

tion of the tensorized subspace S from canonical projections. However, unique identification of445

the tensorized subspace also implies unique completion of the tensorized matrix X⊗p provided446

the observation pattern matrix Ω contains sufficiently many duplicates of each of the
(
d
m

)
pos-447

sible observation patterns so that all the canonical projections of the tensorized subspace can448

be determined.449

For example, suppose each of the N columns in Ω is drawn randomly from the n =
(
d
m

)
450

possible observation patterns of size m in d coordinates. Then, by a variant of the coupon451

collector’s problem, with high probability Ω will contain R copies of each observation pattern452

provided the number of columns N = n log n + (R − 1)n log log n + O(n), which reduces to453

N = O(Rdm log d). If every subset of R columns of X is in general position, it will be possible454

to determine the canonical projections of S from the columns of X⊗p. Once S is recovered,455

then it is possible to uniquely complete the matrix by projecting each incomplete column of456

X⊗p onto S, and performing the “de-tensorization” step of LADMC (Step 4 of Algorithm 1).457

While the above argument establishes a sufficient number of columns to uniquely complete458

a LAD matrix with high probability, we believe this is a vast overestimate of how many columns459

are truly necessary and sufficient for successful completion with LADMC. For example, a naive460
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extension of the results in [29] would lead one to believe that N ≥ (R + 1)(D − R) columns461

are necessary and sufficient for unique recovery of S, which is far less than the estimate462

given in the previous paragraph. However, the tensorization process violates many of the463

genericity assumptions in [29], which prevents the direct extension of these results to the464

present setting. Nevertheless, empirically we observe that LADMC often successfully recovers465

synthetic variety data with the necessary minimal number observations per column (selected466

uniformly at random) provided there are N = O(R(D− R)) columns, and we conjecture this467

is the true necessary and sufficient orderwise number of columns needed for recovery with468

LADMC (see Figure 2 and Section 4 for more discussion on this point).469

3.6.2. Tightness of bounds. In the special case of a union of K subspaces of dimension470

r, Corollary 2 shows that m = O(K1/pr + p) observations per data column are sufficient for471

LADMC to succeed given sufficiently many data columns (under some restrictions on p,K and472

r). In contrast, the information-theoretic requirements for subspace clustering with missing473

data (SCMD), which is mathematically equivalent to matrix completion under a union of474

subspaces (UoS) model, to succeed is m = r+1 observations per data column [30]. If p = O(1),475

i.e., the tensor order is fixed and not allowed to scale with the number of subspaces, this shows476

that the necessary sample complexity of LADMC is order-wise suboptimal by a factor of K1/p.477

However, if the tensor order p scales with the number of subspaces K as p = O(log K) then478

we have m = O(r + log K), which is nearly orderwise optimal. Nonetheless, even with fixed479

and low tensor orders (e.g., p = 2, 3), empirically we find that LADMC performs equally well480

or better than most state-of-the-art SCMD methods on UoS data (see Figure 1).481

4. Experiments. In the following experiments we demonstrate the performance of the482

proposed LADMC algorithm (Algorithm 2.1) on real and synthetic data having low alge-483

braic dimension, and empirically verify the information-theoretic sampling requirements for484

LADMC for unions of subspaces data given in Section 3.485

4.1. Implementation details: LADMC, iLADMC, and VMC. In our implementation of486

LADMC (Algorithm 2.1) we use iterative singular value hard thresholding (ISVHT) algorithm487

[16] to perform LRMC in the tensorized domain. The “de-tensorization” step of Algorithm488

2.1 is performed by a rank-1 truncated SVD of each reshaped tensorized column, where the489

sign ambiguity is resolved by matching with the sign of the observed entry having maximum490

absolute value in each column.491

We also test an iterative version of LADMC (iLADMC), where we perform ISVHT in492

the tensorized domain for a small number of iterations, map back to the original domain by493

the rank-1 SVD de-tensorization step, fill in the observed entries of the matrix, and repeat494

until convergence. In the experiments below we ran 30 inner iterations ISVHT for iLADMC.495

Periodically performing the de-tensorization step amounts to a projection onto the space of496

matrices in the tensorized space with the necessary tensorized structure – i.e., each column497

is a vector of the form x⊗p. While we have no theory to show an iterative approach should498

outperform LADMC, empirically we find that iLADMC converges much faster than LADMC499

(in terms of the number of ISVHT steps, which is the main computational bottleneck) and500

succeeds in completing matrices at lower sampling rates than plain LADMC.501

In an earlier work [25] we introduced an algorithm called variety-based matrix completion502
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(VMC) designed to achieve the same goal as LADMC and iLAMDC. In particular, VMC503

attempts to minimizes the non-convex Schatten-q quasi-norm (0 < q < 1) of the tensorized504

matrix X⊗p using an iterative reweighted least squares approach [24]. The VMC algorithm is505

most similar to iLADMC, since it also enforces the tensorized structure at each iteration.506

4.2. Sample complexity of union of subspaces data. Figure 1 shows the performance507

of the LADMC and iLADMC algorithms against competing methods for the recovery of syn-508

thetic union of subspaces data with missing entries. We generated d×N data matrices whose509

columns belong to a union of K subspaces each of dimension r, and sampled m entries in510

each column, selected uniformly at random. We used the settings d = 15, N = 50K, r = 2,511

for varying measurements m and number of subspaces K, and measured the fraction of suc-512

cessful completions over 25 random trials for each pair (m,K). We judged the matrix to513

be successfully completed if the normalized root mean square error ‖X −X0‖F /‖X0‖F was514

less than 10−4, where X is the recovered matrix and X0 is the ground truth matrix and515

‖ · ‖F denotes the Frobenius norm. Here we compared against low-rank matrix completion516

(LRMC) via iterative singular value hard thresholding (ISVHT) [16] in the original matrix517

domain, and three methods based on subspace clustering: sparse subspace clustering (SSC)518

with entry-wise zero fill [46] followed by LRMC on each identified cluster (SSC+EWZF), the519

expectation-maximization (EM) algorithm proposed in [33], and the group-sparse subspace520

clustering algorithm [26] followed by LRMC on each cluster (GSSC). The subspace clustering521

algorithms were passed the exact rank and number of subspaces. The EM and GSSC algo-522

rithms were initialized with the subspace clustering obtained by SSC-EWZF. Any remaining523

free parameters in these algorithms were set via cross-validation. For LADMC and iLADMC524

we used a quadratic tensorization (p = 2) and LRMC steps for these algorithms were per-525

formed via ISVHT with the rank threshold parameter set to the exact rank of the tensorized526

matrix.527

Figure 1: Phase transitions for matrix completion of synthetic union of subspaces data. We sim-
ulated data belonging to K subspaces and sampled each column of the data matrix at a rate m/d,
and perform matrix completion using LRMC, state-of-the-art subspace clustering based algorithms
(SSC+EWZF, GSSC, EM), and the proposed LADMC and iLADMC algorithms with quadratic ten-
sorizations. Grayscale values indicate the fraction of random trials where the matrix were successfully
recovered; white is 100% success and black is 100% failure. The red dashed line indicates the minimal
information-theoretic sampling rate m/d = O(

√
K) needed for LRMC to succeed in the tensorized

domain as specified by Corollary 1.

We find that LADMC is able to successfully complete the data when the number of528

measurements per column in the tensorized domain exceeds the information-theoretic bounds529
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Figure 2: Effect of number of data col-
umns per subspace N/K on probability of ex-
act LADMC recovery of synthetic UoS data
(K = 10 subspaces of dimension r = 2 in
d = 15 dimensional space). As the number of
columns per subspace increases the probability
of exact recovery is approaching 1 for m ≥ 8,
the necessary minimum number of samples per
column identified by Corollary 1.
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Figure 3: Relative performance of LADMC and
iLADMC compared with VMC [25] for recovery of
synthetic UoS data. LADMC and iLADMC succeed
with high probability at recovering all the columns
where VMC often fails (top row). The algorithms
perform similarly when comparing the probability
of recovering at least 95% columns (bottom row).

established in Corollary 1, as indicated by the red dashed line in Figure 1. This is a substantial530

extension over standard LRMC: for these settings, LADMC is able to complete data matrices531

drawn from up to K = 30 subspaces, whereas LRMC is limited to data drawn from less532

than K = 7 subspaces. However, for LADMC there is a small gap between the information-533

theoretic bound and the true phase transition, which is most apparent where the number of534

subspaces and sampling rate is low (lower-left of the plot), but this gap closes as the number535

of subspaces and sampling rate increases (upper-right of the plot). We hypothesize this is due536

to insufficiently many data columns (see Figure 2 and the discussion below). This gap is less537

pronounced for iLADMC, and in fact, in the upper-right of the plot iLADMC shows recovery538

below the LADMC information-theoretic bound. We conjecture this is because iLADMC is539

enforcing extra nonlinear constraints that are not accounted for in our theory, which may540

reduce the sample complexity relative to non-iterative LADMC, both in terms of necessary541

number of data columns and the number of samples per column. We also observe that the542

performance of LADMC and iLADMC is competitive with the best performing subspace543

clustering-based algorithm, which in this case is GSSC.544

In Figure 2 we investigate the effect of the number of data columns per subspace in the545

overall recovery performance of LADMC for synthetic UoS data. Here we use the same settings546

as in the previous experiment, but fix the number of subspaces to be K = 10 and vary the547

number of columns per subspace, N/K, and the number of random measurements per column,548

m. In this case, the tensorized subspace has rank R = 30 and the necessary minimum number549

of observations per column according to Corollary 1 is m = 8. Observe that as the number550
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of columns per subspace increases, the probability of exact recovery is approaching one for551

m ≥ 8, as predicted by Corollary 1. The minimum number columns per subspace needed for552

exact recovery we conjecture to be N/K = O(R(D−R)/K) (see Section 3.6.1). Assuming the553

constant in the order-wise expression to be one, we have N/K ≈ 270. Note that we do see554

exact recovery at m = 9 samples per column when N/K = 270 and partial success at m = 8555

with two- or three-fold more columns, as predicted.556

4.3. Comparison with VMC. In Figure 3 we compare the relative performance of LADMC557

and iLADMC with VMC for the same synthetic unions of subspaces data as in Figure 1. One558

drawback of VMC observed in [25] is that it often failed to complete a small proportion of the559

data columns correctly, even at high sampling rates on synthetic data. Consistent with the560

results in [25], we find that VMC and LADMC/iLADMC perform similarly when comparing561

probability of recovering at least 95% columns. However, LADMC and iLADMC both recover562

100% of the data columns correctly above the minimum sampling rate, whereas VMC mostly563

fails under this more strict recovery criterion. This shows that LADMC/iLADMC could have564

some empirical benefits over VMC if high accuracy solutions are desired.565

4.4. Higher order tensorizations. In Figure 4 we experimentally verify the predicted566

minimal sampling rate for UoS data with higher order tensorizations specified in Corollary 1.567

In this work we do not pursue higher order p ≥ 3 LADMC with Algorithm 2.1, due to poor568

scalability with respect to the ambient dimension d and a lack of an efficient implementation of569

the de-tensorization step, which prohibited us from investigating the phase transition behavior570

of LADMC over a reasonable range of the number of subspace K. Instead, we verify our571

predictions using VMC algorithm [25], for which the sufficient conditions of Corollary 2 also572

hold (although the necessary conditions of Corollary 1 may not hold). We find that the phase573

transition recovery follows the dependence m = O(K1/p) for tensor orders p = 2, 3 as predicted574

by Corollaries 1 and 2.575
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Figure 4: Phase transitions for matrix completion for unions of subspaces using no tensorization
(LRMC), 2nd order tensorization (VMC, degree 2), and 3rd order tensorizaiton (VMC, degree 3). The
phase transition follows closely the LADMC minimum sampling rate established in Corollary 1, which
is m = O(K1/p) where K is the number of subspaces and p is the tensor order. Here the ambient
dimension is d = 15 and the subspace dimension is r = 3. (Figure adapted from [25]).
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Completion RMSE on Test Set
Dataset Size Samples Mean-fill LRMC LADMC iLADMC

Oil flow 12×1000 50% 0.237 0.164 0.155 0.127

Jester-1 100×24983 18% 4.722 4.381 4.420 4.394

MNIST 196×20000 50% 0.309 0.210 0.187 0.187

Table 2: Matrix completion results on real data

4.5. Experiments on real data. Here we illustrate the performance of LADMC and576

iLADMC on three real world datasets5: the Oil Flow dataset introduced in [3], the Jester-577

1 recommender systems dataset [14], and the MNIST digit recognition dataset introduced578

in [21]. We chose these datasets to demonstrate the feasibility of LADMC on a variety of579

data sources, and because they had sufficiently small row dimension for LADMC/iLADMC580

to be computationally practical. For the Oil Flow and MNIST datasets we simulate missing581

data by randomly subsampling each data column uniformly at random, using a 50%-25%-582

25% training-validation-test split of the data. For the Jester-1 dataset we used 18 randomly583

selected ratings of each user for training, 9 randomly selected ratings for validation and the584

remainder for testing. As baselines we compare with filling the missing entries with the mean585

of the observed entries within each column (Mean-fill), and with LRMC via nuclear norm586

minimization [36], which outperformed LRMC via singular value iterative hard thresholding587

[16] on these datasets. For the LRMC routine within LADMC we set the rank cutoff R to the588

value that gave the smallest completion error on the validation set, and use the same rank589

cutoff R for iLADMC. For all methods we report the root mean square error (RMSE) of the590

completion on the test set. We find that LADMC/iLADMC gives significantly lower RMSE591

on the Oil Flow and MNIST datasets relative to the baselines; iLADMC gives lower RMSE592

than LADMC on the Oil Flow dataset, but performs similarly to LADMC on the others.593

Figure 5 illustrates the improvement of LADMC over LRMC on a selection of examples from594

the MNIST dataset. We see less differences between LRMC and LADMC/iLADMC on the595

Jester-1 dataset, where LADMC/iLADMC give nearly the same RMSE as LRMC. Because of596

lower sampling rate for the Jester-1 dataset, the rank cutoff R in LADMC was kept small to597

avoid overfitting, and we suspect in this case LADMC is fitting a linear subspace to the data,598

which would explain the similar performance to LRMC.599

5. Conclusion. The theory and algorithms presented in this paper give new insight into600

conducting matrix completion when the matrix columns correspond to points on a nonlinear601

algebraic variety, including union of subspaces as a special case. Unlike most matrix comple-602

tion methods assuming a union of subspace model, the proposed approach does not necessitate603

an intermediate subspace clustering step that can be fragile in the presence of missing data.604

The theoretical guarantees in this work focus on unique identifiability of the tensorized605

5Available online: Oil Flow http://inverseprobability.com/3PhaseData.html, Jester-1 http://goldberg.
berkeley.edu/jester-data/, MNIST http://yann.lecun.com/exdb/mnist/. For computational reasons, we re-
duced the size of the MNIST dataset by selecting a random subset of 20,000 images and downsampling each
image by a factor of two in both dimensions.
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Figure 5: Representative examples of matrix completion on MNIST dataset. Here we randomly
remove 50% of the pixels in each MNIST image and attempt to jointly recover the missing pixels of
all images by low-rank matrix completion (LRMC) and low algebraic dimension matrix completion
(LADMC) using a quadratic tensorization (p = 2).

subspace from canonical projections – i.e., we assume we observe multiple columns with each606

possible observation pattern. This assumption is not always met in practice, yet the proposed607

LADMC algorithm nevertheless performs well empirically. An important avenue for future608

study are conditions for unique completion of partially sampled data matrices.609

In the experimental portion of this work we primarily focused on LADMC with a qua-610

dratic tensorization. Yet, we also showed our approach and results generalize to LADMC611

with higher-order tensorizations. In principle, this extension would facilitate the completion612

of data belonging to a richer class of varieties and with more missing data. However, the com-613

putational complexity of LADMC scales as O(dp), where d is the ambient (data) dimension614

and p is the tensor order, making our approach computational challenging for even modest615

data dimensions d.616

One potential solution is to use a kernelized algorithm like in [25] that avoids the construc-617

tion of the large scale tensorized matrix. Unfortunately, kernelized approaches have complexity618

and storage requirements that scale quadratically with the number of data columns, making619

such an approach computationally challenging for big datasets with many datapoints. We are620

actively investigating memory and computationally efficient algorithms that allow more effi-621

cient extensions of the LADMC approach for higher-order tensorizations. Along these lines,622

recent work investigates efficient online algorithms for a class of nonlinear matrix completion623

problems that includes the LADMC model [12].624

Appendix A. Proof of Theorem 1. We prove Theorem 1 by showing we can construct625

an observation pattern matrix Υ∗ ∈ {0, 1}D×(D−R) such that the resulting constraint matrix626

A = A(S,Υ∗) ∈ RD×(D−R) satisfies Lemma 2, i.e., dim ker AT = R.627

Note that in the tensor domain we observe projections of the tensorized subspace onto628

subsets of M =
(
m+p−1

p

)
coordinates where M may be larger than R + 1. However, from629

any canonical projection of the tensorized subspace onto M > R + 1 coordinates we can also630

recover its canonical projections onto any subset of R + 1 coordinates of the M coordinates.631
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That is, if we observe one canonical projection Sυ with |υ| = M then we also have access to632

all canonical projections Sυ′ where υ′ is any observation pattern with supp(υ′) ⊂ supp(υ)633

and |υ′| = R + 1.634

To express this fact more succinctly, we introduce some additional notation. For any635

observation pattern matrix Υ ∈ {0, 1}D×n whose columns all have greater than R nonzeros,636

let Υ̂ denote the matrix of observation patterns having exactly R + 1 non-zeros that can be637

generated from the observation patterns in Υ. For example, if D = 4, R = 1, then from the two638

3-dimensional projections indicated in Υ below we obtain the five 2-dimensional projections639

indicated in Υ̂ below:640

Υ =


1 0
1 1
1 1
0 1

 7→ Υ̂ =


1 0 1 0 0
1 1 0 0 1
0 1 1 1 0
0 0 0 1 1

 .641

Recall that every coordinate in tensor space is associated with an ordered tuple (k1, ..., kp)642

satisfying 1 ≤ k1 ≤ · · · ≤ kp ≤ d, where each ki indicates one of the d coordinates in643

the original space. We assume that coordinates in tensor space are ordered such that for all644

m = 1, ...,d, the first M =
(
m+p−1

p

)
coordinates correspond to all tuples 1 ≤ k1 ≤ ... ≤ kd ≤ m.645

We call this the standard ordering.646

We now show that if Υ consists of all tensorized observation patterns of a certain size647

then the expanded observation pattern matrix Υ̂ contains several submatricies having a useful648

canonical form.649

Lemma 4. Fix a tensor order p ≥ 2. Suppose the columns of Υ are given by all
(
d
m

)
650

tensorized observation patterns of size m ≥ m∗ + p where m∗ is the smallest integer such that651

M∗ :=
(
m∗+p−1

p

)
> R, and let Υ̂ be its expanded observation pattern matrix having exactly652

R + 1 ones per column. Then any permutation of the first M∗ rows of Υ̂ has a submatrix of653

the form654

Υ? =


1

I


}

RD− R.
(A.1)655

656

where 1 is the R× (D− R) matrix of all ones, and I is the (D− R)× (D− R) identity.657

Proof. Let υ∗j denote the jth column of Υ? in (A.1), whose first R entries are ones and658

(R + j)th entry is one while the rest of its entries are zero. We show that υ∗j is a column υ̂ in659

the expanded matrix Υ̂. Let (k1, ..., kp) be the ordered tuple corresponding to the (R + j)th660

coordinate in the tensor space. Note that a column υ in Υ has nonzero (R + j)th entry if661

and only if the corresponding observation pattern ω is nonzero in entries k1, k2, ..., kp. Let662

ω be any column of Ω such that all entries indexed by {1, ...,m∗, k1, ..., kp} are equal to one.663

By construction υ = ω⊗p has ones in its first M∗ entries and must also have a one at the664

(R + j)th entry. This shows that υ∗j is a column of the expanded matrix Υ̂, and thus of any665
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permutation of the first M∗ rows of Υ̂. Since this is true for every j = 1, . . . ,D−R, we know666

that Υ will produce a matrix Υ̂ containing Υ? as in (A.1) (and likewise for any permutation667

of the first M∗ rows of Υ̂).668

Now we are ready to give the proof of Theorem 1.669

Proof of Theorem 1. First we will permute the tensorized coordinate system into a conve-670

nient arrangement. Assume there exists an tensorized observation pattern υ = ω⊗p such that671

dim Sυ = R. Define m∗ = |ω|. Without loss of generality, we may permute coordinates in the672

original domain such that the first m∗ entries of ω are ones. Under the standard ordering of673

tensor coordinates, this means the first M∗ =
(
m∗+p−1

p

)
entries of υ = ω⊗p are ones. Since674

dim Sυ = R, there exists an observation pattern υ′ with supp(υ′) ⊂ supp(υ) having exactly675

R ones such that dim Sυ′ = R. We may permute the first M∗ coordinates in tensor space so676

that υ′ has all its ones in the first R coordinates. Thus, the restriction of S to the first R677

coordinates is R-dimensional (i.e., dim Sυ′ = R).678

Now suppose we observe canonical projections of S onto all tensorized observation patterns679

of size m ≥ m∗+ p, which we collect into a matrix Υ ∈ {0, 1}D×(d
m). Then by Lemma 4 there680

exists a submatrix Υ∗ ∈ {0, 1}D×(D−R) of the expanded matrix Υ̂ having the form (A.1).681

Hence, from canonical projections of S onto observation patterns in Υ we can derive all682

canonical projections of S onto observation patterns in Υ∗.683

For j = 1, . . . ,D − R, let υ∗j be the jth column of Υ∗. Since υ∗j has exactly R + 1 ones,684

and the restricted subspace Sυ∗j is at most R dimensional, the orthogonal complement of685

the restricted subspace Sυ∗j is positive dimensional, and so there exists at least one non-zero686

constraint vector aj ∈ (Sυ∗j )⊥. Let a∗j ∈ Rd be the vector whose restriction to υj is equal687

to aj and zero in its other entries. Then consider the constraint matrix A∗ = [a∗1, ...,a
∗
D−R],688

which has the same dimensions as Υ∗ and is such that an entry of A∗ is nonzero only if the689

corresponding entry of Υ∗ is nonzero. In particular, this means that690

(A.2) A∗ =

[
A∗0
A∗1

]
∈ RD×(D−R)

691

where A∗1 ∈ R(D−R)×(D−R) is a diagonal matrix. To finish the proof it suffices to show the692

diagonal entries of A∗1 are all nonzero, since this would imply rank(A∗) = D − R, and hence693

dim ker[(A∗)T] = R, which by Lemma 2 implies the subspace S is uniquely identifiable.694

Showing the diagonal entries of A∗1 are all nonzero is equivalent to showing the constraint695

vector a∗j is non-zero at entry (R+j) for all j = 1, ...,D−R. Suppose, by way of contradiction,696

that a∗j were zero at entry (R + j). This means that the nonzero support of a∗j is contained697

in the first R coordinates. Let B ∈ RD×R be a basis matrix for the tensorized subspace698

S, υ′ be the D × 1 vector with first R rows equal to 1 and the remainder equal to 0, and699

Bυ′ ∈ RR×R be the matrix composed of the first R rows of B. By definition a∗j ∈ ker BT, and700

so BTa∗j = (Bυ′)
T(a∗j )υ′ = 0. Since a∗j 6= 0 by definition and because the non-zero support701

of a∗j is the same as the non-zero support of (a∗j )υ′ by hypothesis, we have (a∗j )υ′ 6= 0. This702

implies (Bυ′)
T ∈ RR×R is rank deficient, hence so is Bυ′ , or equivalently, dim Sυ′ < R, which703

is a contradiction. Hence a∗j is non-zero at entry (R + j) for all j = 1, ...,D−R, and so A∗1 is704

nonzero at every entry along its diagonal, which completes the proof.705
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