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ABSTRACT

Subspace clustering is a useful tool for analyzing large com-
plex data, but in many relevant applications missing data are
common. Existing theoretical analysis of this problem em-
ploys standard incoherence assumptions and assumes the data
are missing at random to show that subspace clustering from
incomplete data is possible. However, that analysis requires
the number of samples (i.e., partially observed vectors) to be
super-polynomial in the dimension d. Such huge sample sizes
are unnecessary when no data are missing and uncommon in
applications. With missing data, huge sample sizes are suffi-
cient, but are they necessary? This important open question
is addressed here. There are two main contributions in this
paper. First, it is shown that if subspaces have rank at most r
and the number of partially observed vectors greater than dr+1

(times a poly-logarithmic factor), then with high probability
the true subspaces are the only subspaces that agree with the
observed data. This implies that subspace clustering may be
possible without impractically large sample sizes. Moreover,
it tells us that we can certify the output of any subspace clus-
tering algorithm by checking its fit to the observed data. The
second main contribution is a novel EM-type algorithm for
subspace clustering with missing data. We demonstrate and
compare it to several other algorithms. Experiments with sim-
ulated and real data show that such algorithms work well in
practice.

Index Terms— matrix completion, subspace clustering

1. INTRODUCTION

Let X be a d×N data matrix whose columns lie in the union of
several unknown low-dimensional subspaces of Rd. The goal
of subspace clustering is to infer the underlying subspaces
from X and to cluster the columns of X according to the sub-
spaces. In this paper, we suppose that X is partially observed
with entries missing at random and aim at the same goal.

This problem arises in applications ranging from com-
puter vision [1, 2] to network inference [3]. Existing theoret-
ical analysis of this problem employs standard subspace in-
coherence assumptions to show that subspace clustering from
incomplete data is possible provided the number of samples

N is super-polynomial in the dimension of the subspaces [4].
In practice, it is rare to have such huge numbers of samples.
Several heuristic algorithms have been proposed for subspace
clustering with missing data [5, 6, 7]. These methods some-
times work reasonably well in practice, but lack theoretical
justification.

The true sample complexity of subspace clustering with
missing data is an important open question addressed here.
The main theoretical contribution of the paper shows that if
the number of partially observed data vectors per subspace is
a rank-degree power of the dimension, then with high prob-
ability the true subspaces are the only subspaces that agree
with the observed data. This implies that subspace clustering
may be possible in practice without large numbers of samples.
This is a significant improvement over the large requirements
in [4], specially in the cases where r is small, as happens in
many real applications, e.g. the ones approached in Section 6,
where r = O(1). The main algorithmic contribution of the
paper is a new, computationally-efficient EM algorithm for
subspace clustering with missing data. Experiments with real
and synthetic data show that the EM algorithm performs bet-
ter than existing methods even with O(Kd) samples - fewer
than the theoretically derived sample complexity bound.

Subspace clustering with missing data shares aspects of
subspace clustering [8, 9, 10] and low-rank matrix comple-
tion [11], and the combination of these areas is the central
perspective of prior theoretical analysis of the problem (also
referred to as high-rank matrix completion) [4]. The main
assumptions used in our theoretical analysis are fundamen-
tally different from those arising from traditional Low-Rank
Matrix Completion, e.g. [4], but in some sense, more nat-
ural and much less restrictive. Specifically, the columns of
X are drawn from a non-atomic distribution supported on a
union of low-dimensional generic subspaces, and entries in
the columns are missing uniformly at random (precise state-
ments of our assumptions are given in the next section). The
main theoretical result of this paper shows that, under these
assumptions, subspace clustering with missing data is possi-
ble from far fewer observations than the (often impractically)
large number required by the algorithm in [4].

In addition to the algorithm in [4], other heuristic proce-



dures have been proposed without theoretical support [5, 7].
For problems with significant fractions of missing data and
practically relevant sample sizes, the k-subspaces algorithm
in [5], which takes the algorithm of [12] and generalizes it to
handle missing data, has been shown to be particularly effec-
tive. This paper proposes a new EM algorithm for subspace
clustering with missing data, which can be viewed as a gen-
eralization of [13] to handle missing data and/or a general-
ization of [14] to low-rank covariances. The EM algorithm
is computationally-efficient (just slightly more intensive than
the greedy method of [5]) and outperforms the algorithms in
[5, 4] in experiments with real and synthetic data. Further-
more, our main theoretical result enables one to certify the
result of any subspace clustering algorithm by checking the
residual error on the observed data.

2. KEY ASSUMPTIONS AND MAIN RESULTS

We state and prove our result in order to give the fundamental
ideas behind our approach.

Definition 1. We denote the set of d × N matrices with rank r
byM(r, d×N). A generic (d×n)-matrix of rank r is a continu-
ousM(r, d, n)-valued random variable. We say a subspace S
is generic if a matrix whose columns are drawn i.i.d. accord-
ing to a non-atomic distribution with support on S is generic
a.s.

A1. The columns of our d × N data matrix X are drawn ac-
cording to a non-atomic distribution with support on the
union of at most K generic subspaces. The subspaces,
denoted by S = {S k}, each has rank exactly r < d.

A2. The probability that a column is drawn from subspace k
is ρk. Let ρ∗ be a bound on mink{ρk}.

A3. We observe X only on a set of entries Ω and denote the
observation XΩ. Each entry in XΩ is sampled indepen-
dently with probability p.

Throughout the paper we use XΩ to refer indistinctly to
the matrix XΩ as well as the set of columns of the matrix XΩ.
We split XΩ in two sets: the search set, X̃Ω, with Ñ := |X̃Ω|

columns, and the test set, X̄Ω, with N̄ := |X̄Ω| columns, s.t.
N := |XΩ| = Ñ + N̄. We use X̃[k]

Ω
to denote the columns of X̃Ω

corresponding to the kth subspace, and equivalently for X̄[k]
Ω

.
We now present our main result, which we prove in Sec-

tion 3. The theorem below shows that if we observe at least
order dr+1(log d/r + log K) columns and at least order r log2 d
entries in each column, then identification of the subspaces
is possible with large probability. This result can be easily
generalized to a relaxed version of assumption A1 to the case
where the dimensions of the subspaces are upper bounded by
r. Note, that the total number of columns needed is only poly-
nomial in d, in contrast to the super-polynomial requirement
of dlog d of the best previously existing bounds [4].

Theorem 1. Suppose A1-A3 hold. Let ε > 0 be given.
Assume the number of subspaces K ≤ ε

6 ed/4, the total
number of columns N = Ñ + N̄ ≥ (2d + 4M)/ρ∗, and

p ≥
1
d

128µ2
1rβ0 log2(2d),

β0 =

√√
1 +

log
(

6K
ε

12 log(d)
)

2 log(2d)
,

M =

(
de

r + 1

)r+1 (
(r + 1) log

(
de

r + 1

)
+ log

(
8K
ε

))
,

where µ2
1 := maxk

d2

r ||UkV∗k ||
2
∞ and UkΣkV∗k is the singu-

lar value decomposition of X̃[k]. Then with probability at
least 1 − ε, S can be uniquely determined from XΩ.

3. PROOFS OF MAIN RESULTS

The core of the main result lies in Lemmas 8 and 10 below.
First we make some notational remarks. When we write

xω ∈ XΩ, we are referring to one column in the set of columns
XΩ. Additionally if we write xω ∈ S k, we mean that the sub-
space S k fits xω, or by XΩ ⊂ S k we mean that S k fits all the
columns of XΩ in the sense that there exists a completion x̂ of
xω such that x̂ ∈ S k.

We also introduce the definition of a validating set:

Definition 2. (Validating set) Consider a collection of columns
{xiωi
}mi=1. Consider a graph G with m nodes representing

these m columns, where edge (i, j) exists if |ωi ∩ ω j| > r.
We say {xiωi

}mi=1 is a validating set if G is connected and⋃m
i=1 ωi = {1, ..., d}.

3.1. Intuition

We are now ready to describe the intuition behind our ap-
proach. We consider an exhaustive search over every set of d
columns in the search set. We use X̃(`)

Ω
to denote the `th com-

bination of d columns of X̃Ω, where ` ranges from 1 to
(

Ñ
d

)
.

For each of these combinations, if there is a subspace that
uniquely fits all d columns, we validate it by finding a subset
of the test set that fits the subspace and is also a validating set.
We use Ŝ to denote the collection of all subspaces satisfying
these conditions. This procedure is detailed in Algorithm 1.

By Lemma 8 below, every combination of d columns from
a single subspace will have a unique completion and fit a val-
idating subspace with high probability. By Lemma 10 only
true subspaces can fit a validating set. Putting together these
two results, we get that with high probability Ŝ = S. That is,
we can identify S from XΩ.



Algorithm 1 Subspaces Identification
Input: XΩ, r, ρ∗
Output: Ŝ
Set X̃Ω as the 1st 2d/ρ∗ columns of XΩ, and X̄Ω as the
remaining ones.
Initialize Ŝ = 0.
for ` = 1 to

(
Ñ
d

)
do

if X̃(`)
Ω

is uniquely r-completable. then
S̃ ` = span{X̃`}

if S̃ ` fits a validating set from X̄Ω. then
Ŝ = Ŝ ∪ S̃ `.

end if
end if

end for

Algorithm 2 High-Rank Matrix Completion

Input: XΩ, Ŝ
for i = 1 to N do

k = argument s.t. the residual of xω onto Ŝ k = 0.
Complete xω according to S k.

end for

Once Ŝ is known, completing XΩ becomes a trivial task
(Algorithm 2), since with enough observations (> r) in each
column vector and the assumption of genericity, one can eas-
ily determine which subspace each column belongs to by sim-
ply projecting the observed coordinates of the column onto
each of the subspaces in Ŝ, and then completing the missing
entries according to that subspace.

3.2. Low-Rank Matrix Completion

We begin the proof of our main theorem using Theorems 2
of [11] and 2.6 of [15] with some adjustments to our context.
We state our versions here as Lemmas 1 and 2.

Lemma 1 (Low-Rank Matrix Completion [11] ). Consider a
d× d rank-r matrix Y with singular value decomposition Y =

UΣV∗. Let the row and column spaces of Y have coherences
(as in Definition 1 of [11]) bounded above by some positive
µ0. Suppose the matrix UV∗ has a maximum entry bounded
by µ1

√
r/Cd2 in absolute value for some positive µ1. Suppose

that every entry of Y has been observed independently with
probability p to yield YΩ, with

p ≥
1
d

128 max{µ2
1, µ0}rβ0 log2(2d)

and β0 as in Theorem 1. Then Y∗, the minimizer to the nuclear
norm minimization problem (Equation 2 of [11]) is unique
and equal to Y with probability at least 1 − ε

3K .

Proof. P ((i, j) ∈ Ω) = p by definition, so E[|Ω|] = pd2. Also,
|Ω| =

∑d,d
i, j=1 1{(i, j)∈Ω}, so using the multiplicative form of the

Chernoff bound we get

P
(
|Ω| ≤

pd2

2

)
= P (|Ω| ≤ (1 − β)E [|Ω|]) ≤ e−

β2

2 E[|Ω|]

≤ e−
pd2

8 ≤
ε

6K

by taking β = 1/2 and since pd2 > 8 log( 6K
ε

).
Given |Ω| ≥ pd2/2, Equation 2 of [11] is satisfied for β0

as in Theorem 1, and so all assumptions of Theorem 2 of [11]
hold, and therefore Y∗ = Y, i.e. Y can be recovered from YΩ,
with probability at least 1 − ε

6K .
Using the Law of Total Probability on the event that Y∗ ,

Y conditioning on the event that |Ω| > pd2/2 and remember-
ing that P(·) ≤ 1 we have the Lemma:

P(Y∗ , Y) ≤ P (Y∗ , Y| |Ω| > m) + P(|Ω| ≤ m)

≤
ε

6K
+

ε

6K
=

ε

3K

�

Lemma 2 (Completion Identifiability [15]). Let Ω be given.
Let X and Y be two different generic rank-r matrices. Then
XΩ is completable (i.e. X can be recovered from XΩ) if and
only if YΩ is completable.

Proof. See Theorem 2.6 of [15]. �

These two lemmas are used to prove Lemma 3, which is a
version of Lemma 1 that gives us a probability of Low-Rank
completion of generic matrices.

Lemma 3 (Generic Low-Rank Matrix Completion). Con-
sider a d × d generic matrix X. Suppose that every entry of X
has been observed independently with probability p to yield
XΩ, with p and β0 as in Theorem 1. Then X can be recovered
with probability at least 1 − ε

3K .

Proof. In Lemma 1, µ0 and µ1 satisfy 1 ≤ µ0 ≤ d/r and
µ1 ≥ 1. So we can take a generic matrix Y that satisfies all
assumptions of Lemma 1 with µ0 = 1. We know we can
do this, as there exist matrices that are both incoherent and
generic. Then Ω satisfies the sample assumptions of Lemma
1 with p as in Theorem 1, so if Y were sampled in Ω, all
assumptions of Lemma 1 would be satisfied. Whence, with
probability at least 1 − ε

3K , YΩ is uniquely completable, and
so is XΩ by Lemma 2, as both X and Y are generic. �

3.3. Probability of a Validating Set

The following Lemmas bound the probability of having a val-
idating set in X̄[k]

Ω
.

Lemma 4. If |X̄[k]
Ω
| ≥ 2M, with M as in Theorem 1, then X̄[k]

Ω

has at least M columns with more than r entries each, with
probability at least 1 − ε

8K .



Proof. First, notice that for any xω ∈ X̄[k]
Ω

, E[|ω|] = dp and
|ω| =

∑d
j=1 1{ j∈ω}, so using again the multiplicative form of

the Chernoff bound we have

P(|ω| ≤ r) ≤ P(|ω| ≤ (1 − β)E[|ω|])

≤ e−
β2

2 E[|ω|] ≤ e−
1
8 dp ≤ 1 − 4

(
r + 1

de

)r+1

.

by taking β = 1/2 and substituting dp.
Then define X̄[k]

Ω∗
as the subset of X̄[k]

Ω
which columns have

more than r entries, i.e.

X̄[k]
Ω∗

= {xω ∈ X̄[k]
Ω

: |ω| > r}.

If we let p∗ := 1 − P(|ω| ≤ r), by our previous argument,
E[|X̄[k]

Ω∗
|] = p∗|X̄[k]

Ω
|, and since |X̄[k]

Ω∗
| =

∑2M
i=1 1{|ωi |≥r}, by the

multiplicative form of the Chernoff bound we obtain

P
(
|X̄[k]

Ω∗
| ≤ M

)
= P

(
|X̄[k]

Ω∗
| ≤ (1 − β)E[|X̄[k]

Ω∗
|]
)

≤ e−
β2

2 E[|X̄[k]
Ω∗
|] ≤ e−

1
4 p∗M ≤

ε

8K
.

by taking β = 1
2 and substituting p∗ and our choice of M. �

Lemma 5 (Coupons Collector). Consider a collection of
columns YΩ with |YΩ| = M as in Theorem 1, and whose
columns (sampled uniformly and independently at random)
all have exactly r + 1 entries. Then with probability at least
1 − ε

8K , the columns of YΩ have all the different
(

d
r+1

)
obser-

vation sets (of size r + 1).

Proof. This is a simple application of the well known Coupons
Collector problem. We give a proof for completeness. First
notice that there are

(
d

r+1

)
≤

(
de

r+1

)r+1
different observation

sets (coupons). Let Z j be the event that none of the first M
columns in YΩ have the jth observation set. It is easy to see
that

P(Z j) =

1 − 1(
d

r+1

) M

≤

1 − 1(
de

r+1

)r+1


M

≤ e−M( r+1
de )r+1

Union bounding over these events and substituting M we ob-
tain the Lemma:

P


( d

r+1)⋃
j=1

Z j

 ≤
(

d
r + 1

)
P(Z j) ≤

(
de

r + 1

)r+1

e−M( r+1
de )r+1

≤
ε

8K
.

�

Lemma 6. Assume |X̄[k]
Ω
| ≥ 2M, with M as in Theorem 1.

Then with probability at least 1 − ε
4K X̄[k]

Ω
has at least one

validation set.

Proof. Consider a matrix YΩ as in Lemma 5. It is clear that
the probability that X̄[k]

Ω∗
contains a validating set is larger than

the probability that YΩ does. And the latter is larger than the
probability that the columns of YΩ have all the different

(
d

r+1

)
observation sets (of size r + 1). By Lemma 5, this probability
is at least 1 − ε

8K . And by Lemma 4 the probability that X̄[k]
Ω

has at least M columns with more than r entries is at least
1− ε

8K . A simple use of the Law of Total Probability gives the
desired result. �

3.4. Proof of Main Result

First a Lemma to bound the probability of having sufficient
columns of each subspace.

Lemma 7. Let the conditions of Theorem 1 hold. Then
|X̃[k]

Ω
| > d with probability at least 1 − ε

6K , and |X̄[k]
Ω
| > 2M

with probability at least 1 − ε
4K .

Proof. Remember that Ñ = 2d/ρ∗ and N̄ = 4M/ρ∗.
Notice that |X̃[k]

Ω
| =

∑Ñ
i 1{xi∈S k}. By A2 P(x ∈ S k) = ρk, so

E[|X̃[k]
Ω
|] = Ñρk. So by the Multiplicative form of the Chernoff

bound we have

P(|X̃[k]
Ω
| ≤ d) ≤ P

(
|X̃[k]

Ω
| ≤ (1 − β)E

[
|X̃[k]

Ω
|
])

≤ e−
β2

2 E
[
|X̃[k]

Ω
|
]

= e−
Ñρk

8 ≤ e−
Ñρ∗

8 ≤
ε

6K
,

by taking β = 1
2 and noticing that E[|X̃[k]

Ω
|] = Ñρk > Ñρ∗ = 2d

and d ≥ 4 log( 6K
ε

).
Similarly, P(|X̄[k]

Ω
| ≤ 2M) ≤ e−

M
2 ≤ ε

4K , as M ≥ 2 log( 4K
ε

)
�

Lemmas 3, 6 and 7 give us Lemma 8, which shows that
with high probability the true subspaces will be contained in
Ŝ.

Lemma 8 (True Positive). Let A1-A3 hold. Suppose N, M,
p and β0 are as in Theorem 1. Then S k ∈ Ŝ with probability
at least 1 − ε

K for every k.

Proof. Given that X̃Ω has at least d columns from S k, there
will be at least one ` for which X̃(`)

Ω
⊂ X̃[k]

Ω
deterministically.

Whence, all the assumptions of Lemma 3 are satisfied for X̃(`)
Ω

,
and therefore we know it is uniquely completable with prob-
ability at least 1 − ε

3K . Equivalently, S̃ ` will be the unique
r-dimensional subspace that will fit X̃(`)

Ω
, and equal to the true

subspace S k for some k.
Similarly, given |X̄[k]

Ω
| ≥ M, by Lemma 6 X̄[k]

Ω
will contain

a validating set with probability at least 1− ε
4K (which S̃ ` = S k

will obviously fit).
Using the Law of Total Probability on P(S k < Ŝ) condi-

tioning on the events that |X̃[k]
Ω
| ≥ d and |X̄[k]

Ω
| ≥ M, which



have low probability according to Lemma 7, and remember-
ing that P(·) ≤ 1, we obtain the desired result

P(S k < Ŝ) ≤ P
(
X̃(`)

Ω
⊂ X̃[k]

Ω
is uniquely completable

∣∣∣ |X̃[k]
Ω
| ≥ d

)
+ P

(
X̄[k]

Ω
contains a validating set

∣∣∣ |X̄[k]
Ω
| ≥ M

)
+ P

(
|X̃[k]

Ω
| < d

)
+ P

(
|X̄[k]

Ω
| < k

)
≤

ε

3K
+

ε

6K
+

ε

4K
+

ε

4K
=
ε

K
.

�

Before we present the proof of the main theorem, we state
the following Lemmas that prove that no subspace other than
the true ones will be contained in Ŝ.

Lemma 9. Let xωx , yωy ∈ X̄Ω, with |ωx ∩ ωy| > r. Suppose
S̃ fits xωx and yωy . Then xωx and yωy belong to the same
subspace, say S k, a.s. Furthermore, letting ω = ωx ∪ ωy,
S̃ ω = S kω a.s.

Proof. Since |ωx| ≥ |ωx ∩ ωy| > r, and all columns in X̄Ω

are generic w.r.t. the columns in X̃Ω that produced S̃ , xωx can
only lie in S̃ iff S̃ ωx = S kωx

, where k is the subspace that x
belongs to.

Similarly, |ωy| > r and yωy ∈ S̃ imply S̃ ωy = S k′ωy
, where

k′ is the subspace y belongs to.
Furthermore, since |ωx ∩ ωy| > r and both xωx and yωy lie

in S̃ , k and k′ must be the same and also S̃ ω = S kω . �

Lemma 10. If S̃ fits a validating set, then S̃ = S k for some k
a.s.

Proof. Let {xiωi
}mi=1 be a validating set. Then by induction on

Lemma 9, S̃ ω = S kω for some k, where ω = ∪m
i ωi. But since

ω = {1, ..., d} by the very definition of a validating set, we
conclude that S̃ = S k. �

We now present the proof of our main result, Theorem 1.

Proof. (Theorem 1) It suffices to show that with high proba-
bility Ŝ = S. Write

P
(
S , Ŝ

)
= P

(
S 1 Ŝ ∪ S 2 Ŝ

)
≤ P

⋃
k

S k < Ŝ ∪

(Ñ
L)⋃
`=1

S ` ∈ Ŝ\S


≤

K∑
k=1

P
(
S k < Ŝ

)
+

(Ñ
L)∑
`=1

P
(
S ` ∈ Ŝ\S

)
By Lemma 8, P(S k < Ŝ) ≤ ε

K ∀ k. Also, notice that P(S ` ∈

Ŝ\S) is equivalent to the probability that S ` fits a validating
set given that S ` , S k ∀ k, and this probability is zero by
Lemma 10. Thus P

(
S , Ŝ

)
≤

∑K
k=1

ε
K +0 = ε, as desired. �

4. EM ALGORITHM FOR SUBSPACE CLUSTERING
WITH MISSING DATA

The problem of subspace clustering with missing data can be
posed as fitting a mixture of Gaussians with low-rank covari-
ances to incomplete data. This naturally suggests considering
extensions of the EM algorithm in [13] to handle missing data,
or alternatively, a generalization of the EM algorithm in [14]
to low-rank covariance matrices. We propose the following
EM algorithm for this task, based largely on [13]. To begin
we assume the data are contaminated with additive Gaussian
noise.

Consider the usual Gaussian mixture framework, and ad-
ditionally split every xi ∈ XΩ into its observed and missing
parts: [

xo
i

xm
i

]
=

K∑
k=1

1{zi=k}

([
Woi

k
Wmi

k

]
yi +

[
µoi

k
µmi

k

]
+ ηi

)
, (1)

where {1, ...,K} 3 zi
iid
∼ ρ ⊥ yi

iid
∼ N(0, I), Wk is a d × r matrix

whose span is S k, and ηi|zi
iid
∼ N(0, σ2

zi
I) models the noise in

the zth
i subspace. We are interested on the Maximum Like-

lihood Estimate (MLE) of θ = {W, µ, ρ, σ2}, where W :=
{Wk}

K
k=1, µ := {µk}

K
k=1, ρ and σ2 := {σ2

k}
K
k=1.

Let Xo := {xo
i }

N
i=1, Xm := {xm

i }
N
i=1, Y := {yi}

N
i=1, Z := {zi}

N
i=1

s.t. Xo is our data, θ is the parameter of interest, and Xm,
Y and Z are the hidden variables in the EM algorithm. The
iterates of the algorithm are computed as follows, where Ek 〈·〉

denotes E·|xo
i ,zi=k,θ̂[·].

W̃k =

 N∑
i=1

pi,kEk

〈
xiyT

i

〉
−

(∑N
i=1 pi,kEk 〈xi〉

) (∑N
i=1 pi,kEk 〈yi〉

T
)

∑N
i=1 pi,k

 N∑
i=1

pi,kEk

〈
yiyT

i

〉
−

(∑N
i=1 pi,kEk 〈yi〉

) (∑N
i=1 pi,kEk 〈yi〉

T
)

∑N
i=1 pi,k


−1

,

(2)

µ̃k =

∑N
i=1 pi,k

(
Ek 〈xi〉 − W̃kEk 〈yi〉

)
∑N

i=1 pi,k
, (3)

σ̃2
k =

1
d
∑N

i=1 pi,k

 N∑
i=1

pi,k

(
tr

(
Ek

〈
xi xT

i

〉)
− 2µ̃T

k Ek 〈xi〉 + µ̃T
k µ̃k

−2tr
(
Ek

〈
yi xT

i

〉
W̃k

)
+ 2µ̃T

k W̃kEk 〈yi〉 + tr
(
Ek

〈
yiyT

i

〉
W̃T

k W̃k

) )]
,

(4)

ρ̃k =
1
N

N∑
i=1

pi,k , pi,k := Pzi |xo
i ,θ̂

(k) =
ρ̂kPxo

i |zi=k,θ̂(xo
i )∑K

j=1 ρ̂ jPxo
i |zi= j,θ̂(xo

i )
.

(5)

The expectations in (2) - (5) are easily derived from
the following conditional distribution, where Mk := σ2I +



WoiT
k Woi

k ,[
xm

i
yi

]∣∣∣∣∣∣ xo
i , zi = k, θ ∼ N

([
µmi

k + Wmi
k M−1

k WoiT
k (xo

i − µ
oi
k )

M−1
k WoiT

k (xo
i − µ

oi
k )

]
,

σ2
[
I + Wmi

k M−1
k WmiT

k Wmi
k M−1

k
M−1

k WmiT
k M−1

k

])
.

(6)

Notice that in the noiseless case we can no longer compute
(5), as (W̃oi

k W̃oiT
k ) is not invertible. Nevertheless, viewing the

noiseless case as the limit as σ2 → 0, we can compute pi,k for
a fixed arbitrarily small σ2 and with it we can find estimates
under such σ2, say Ŵσ2 and ρ̂σ2 , s.t. the noiseless estimates
are given by Ŵ = limσ2→0 Ŵσ2 and ρ̂ = limσ2→0 ρ̂σ2 . In other
words, we can estimate W and ρ in the noiseless case with ar-
bitrary precision by letting σ2 be arbitrarily small. This issue
arises only when computing pi,k; all the other desired expec-
tations can be evaluated directly by substituting σ2 = 0 in
(6), and since pi,k converges to 1{zi=k}1{Ŵk=Wk}

as σ2 → 0, we
can also do a hard assignment at the end of EM to improve
precision.

The computations of the expected means and covariances
have the highest computational complexity in the noiseless
and noisy case respectively, with |ωc

i |r and |ωc
i |

2r operations
per column per subspace per iteration. Since |ωc

i | is close to
and upper bounded by d, the computational complexity of the
EM algorithm per iteration will be in the order of NKdr and
NKd2r in the noiseless and noisy cases, respectively. In con-
clusion, noise in our measurements increases the computa-
tional complexity of the algorithm by one order of magnitude.

5. SIMULATIONS

The first experiment we present is a set of simulations of the
EM setup above with d = 100, K = 4, r = 5. For each simu-
lation we generated K subspaces and K initial estimates, each
spanned by an orthonormal basis generated from r i.i.d. stan-
dard gaussian d-dimensional vectors — known to be highly
incoherent — and Nk columns from each subspace with |ω|
observed entries each. We evaluated the performance of the
EM algorithm derived before, batch k-GROUSE (BKG) [5]
and the HRMC algorithm from [4]. We ran 450 independent
trials of this experiment as a function of Nk, |ω| and σ2. The
results are summarized in Figure 1 (a)-(c).

For a second simulation, we consider an application in
which unions of subspaces are indeed a good model for data.
Distances in a network measured in number of hop counts
between passive monitors and computers determine the net-
work’s topology [16]. As measurements in such monitors is
not controlled, not all distances can be observed. Fortunately,
these distances lie in a union of K 2-dimensional subspaces
with K being the number of subnets [3].

With this in mind we simulated a network and measured
hop counts based on shortest-path routing using a Heuristi-
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Fig. 1. (a) - (c): Proportion of misclassified points, (a) as a function
of Nk with |ω| = dr log de = 24 fixed; (b) as a function of |ω| with
Nk = 2.1d fixed; (c) as a function of σ2 with Nk = 3d and |ω| =

dr log de fixed. (d) Cumulative Distribution of hop count estimation
error for K = 12 subnets, d = 75 passive monitors and N = 2700 IP
addresses from 40% of total observations.

cally Optimal Topology from [17] with d = 75 passive mon-
itors randomly located and Nk = 225 IP addresses from each
of the K = 12 subnets. In Figure 1(d) we compare the results
of the hop count matrix estimation from only 40% of the total
hop counts using EM, BKG, HRMC and LRMC.

6. REAL DATA - COMPUTER VISION: HOPKINS
DATASET

Finally, we tested our EM algorithm using real data from
the Hopkins 155 Motion Segmentation Dataset [18]. In each
video of this dataset, a collection of points are identified over
the frames. Each point belongs to an unknown cluster, e.g.
a car, a person, background, etc., and the positions of these
points are known to lie in a union of subspaces [8]. However,
in real life it is unusual to be able to identify every point over
all the frames of a video, due to occlusion, objects leaving the
video window, objects rotation, miss detection, etc. Therefore
missing data arises naturally.

Table 1 shows a summary of EM’s performance on this
dataset, where we synthetically removed data uniformly at
random.

Comparing to the related table in [8] we see that our EM
algorithm performs about average of the algorithms in mean,



Table 1. Classification Errors (in %) of EM on the Hopkins
155 Motion Segmentation Dataset

TwoMotions

|ω|(%) Check.(78) Traffic (31) Articul. (11)
Mean Median Mean Median Mean Median

100 4.3 0 0.1 0 0.5 0
70 3.6 0.5 0.9 0 4.6 0
50 3.2 0.3 1.3 0 2.4 0
30 5.8 0.9 3.4 0.4 2.4 0

ThreeMotions

|ω|(%) Check.(78) Traffic (31) Articul. (11)
Mean Median Mean Median Mean Median

100 16.9 17.9 1.3 0.4 0 0
70 16.2 17.9 10.5 6.1 9.0 9.0
50 17.4 17.9 10.7 8.9 21.7 21.7
30 25.4 25.6 19.6 13.0 22.4 22.4

but its performance is nearly as good in median, even with
missing data, as the best algorithms with full data. We can
interpret that to mean that there are a few datasets where EM
does very poorly. In these datasets, there may be overlapping
subspaces or ill conditioned data, which would be problem-
atic for any algorithm.

7. CONCLUSION

In this paper we showed that only O(Kdr+1) columns are suf-
ficient to guarantee a unique solution for subspace clustering
with missing data, as opposed to O(dlog d) from previous ex-
isting bounds. A powerful conclusion of our theory is that if
there is an algorithm that finds a set of K low-dimensional
subspaces that fit independent generic validation sets, then
that solution is the true S a.s. Furthermore, we presented a
novel EM-type algorithm that in practice performs very well
even with fewer columns than theoretically derived, suggest-
ing that our bound is over sufficient. The true sample com-
plexity of this problem, conjectured to be O(Kd), and a prac-
tical algorithm that provably solves it under such conditions,
remain important open questions that our immediate future
work will aim to answer.
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