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ABSTRACT

This paper presents an online method to track a subspace U from severely corrupted and incom-
plete data. If we could identify the corrupted entries in a new observation x, then we would be
able to update U according to the uncorrupted entries in x using an incomplete-data rank-one
update. The challenge is to identify the corrupted entries in x, which is in general NP-hard.
To work around this we propose an approach that iteratively removes the entries that most
affect partial projections of x onto U. Our experiments show that this simple approach outper-
forms state-of-the-art methods, including `1-optimization, specially when most entries in x are
corrupted.
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1. INTRODUCTION

Subspace tracking aims to continuously estimate a subspace U that changes over time. At each
time we observe a new data vector x, and the goal is to update U accordingly. The challenge is
that x often has missing values and corrupted entries (outliers).

For example, suppose you want to distinguish between background and foreground in a video.
The background can be modeled as a low-dimensional subspace U that slowly evolves over time
(illumination changes, small camera variations, etc.). At each time we observe a new video frame
(image), and want to update the background based on this new image x. However, some pixels
in x may correspond to foreground objects, which are outliers from the background. In addition,
processing the whole image can be time consuming. Fortunately, recent theory on missing data
shows that a subspace can be estimated from highly incomplete data. So, for real-time video
surveillance it is often better to subsample x (inducing missing data). To summarize, we want
to constantly update the background subspace U according to a subsampled image x that is
corrupted with outliers.

Background segmentation is just one example of the applicability of robust subspace tracking
from incomplete data [1–3]. Similar examples arise in medical imaging [4], recommender systems
[5, 6], communications [7], anomaly detection [8, 9], hyperspectral imaging [10] and target
localization [11], among many others [12].
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Motivated by these applications, the last years have seen a wide range of approaches to sub-
space estimation and tracking, for example GRASTA [1], ROSETA [2], optical flow orientations
[3], kernels [9, 10] and ESPRIT [11], to name a few.

The current state-of-the-art approaches [1, 2] use convex relaxation techniques to identify
the inlier entries in x, and then uses those inliers to do an incomplete-data rank-one subspace
update (move in the direction of the gradient on the Grassmann manifold [13]). Typically, these
approaches require that the subspace U has low coherence (parameter indicating how aligned
a subspace is to the canonical axes), and that the outliers are sparse, uniformly located, and
unstructured (for example, not lying in an other subspace).

These are reasonable assumptions in many applications, but certainly not all. For example,
in many microscopy and astronomy videos (where most pixels are dark) the background subspace
is highly coherent. In some cases, like traffic monitoring or video surveillance (where foreground
objects like cars or pedestrians only take a small fraction of each frame), outliers are indeed
sparse. However, in many other scenarios this is not the case. For example, if the camera is
close to a foreground object (e.g., in a selfie), then the foreground may take most of the fame,
producing an image predominantly composed of outliers. Furthermore, the location, color and
shape of foreground objects are strongly correlated over time. This results in non-uniformly
located and highly structured outliers.

These limitations are not specific to computer vision applications. For another example,
consider recommender systems. You have a collection of users and items (movies, restaurants,
shoes, etc.). The goal is to predict which items a user would like in order to make good
recommendations. The preferences of some users can be explained with a subspace U; the
preferences of other users can be explained with an other subspace V (these subspaces may or
may not be coherent). Now suppose that you observe a vector x containing mixed information
(ratings) from two users that share the same account (as is often the case, for example, in
Netflix), and you want to update U and V accordingly. The entries of x corresponding to V are
outliers with respect to U, and vice-versa. In other words, the ratings of one user become the
outliers of an other. This implies that (depending on the number of users, and how many items
each rates) most entries in x may be outliers for each subspace. Furthermore, these outliers
are highly structured (they lie in an other subspace). In addition, the items that each user
rates tend to be highly correlated (a child is more likely to rate children movies), and hence
the outliers (ratings of other users) will not be uniformly distributed. As we will see, existing
methods tend to fail in scenarios like these.

Motivated by this, we propose a new approach for robust subspace tracking from incomplete
data. In contrast to existing algorithms, our method can handle a large number of arbitrarily
located and highly structured outliers, and even highly coherent subspaces.

Notice that the main challenge is to determine which entries of x are outliers. After this,
we can update U according to the inliers using an incomplete-data rank-one update, as in [13].
Hence, we will focus on identifying outliers. The main insight behind our approach is that outlier
entries often increase the ratio between the norm of x and its projection onto U. Hence, we
will search for all such entries and remove them (hence the name erasure), until we end with a
sub-vector of x whose norm is equal (or close) to its projection (indicating that all the remaining



entries are inliers). This process may remove some inliers along the way. However, as we will
see, finding a few inliers is enough to find them all.

Our experiments show that our approach outperforms the current state-of-the-art algorithms,
including `1-minimization, specially when x has more outliers than inliers.

Organization of the paper

In Section 2 we give the formal setup of the problem and our assumptions. In Section 3 we
introduce our erasure algorithm. We present all our experiments in Section 4.

2. MODEL AND ASSUMPTIONS

Let U and U′ be r-dimensional subspaces of Rd. Let u ∈ Rd be a vector in U′. The ideal goal
is to update U according to u in order to obtain a new subspace Û that is closer to U′. The
difficulty is that instead of observing u, we observe xω, defined as follows.

Let ω be a subset of {1, . . . , d}. For any subspace, matrix or vector that is compatible with
a set of indices ·, we will use the subscript · to denote its restriction to the coordinates/rows in
·. For example, Uω ⊂ R|ω| denotes the restriction of U to the coordinates in ω, and uω ∈ R|ω|
denotes the restriction of u to the rows in ω.

Let {i, ic} be a partition of the elements in ω. Let x be a vector in Rd that is equal to u on
the rows in i, equal to an arbitrary vector v ∈ Rd on the rows in ic, and unknown on the rows
in {1, . . . , d}\ω. In other words, i indicates the inlier entries of xω. To summarize, we observe
xω composed of:

xi = ui,

xic = vic ,
(1)

and the goal is to update U according to the incomplete inlier vector ui.

Remark 1. The updating process is repeated continuously. More precisely, we have a sequence
of subspaces {Ut}t≥0. At each time t > 0 we have an estimate Ût−1, and we observe (xt)ωt,
composed of (xt)it = (ut)it and (xt)(ic)t = (vt)(ic)t, where ut ∈ Ut and vt ∈ Rd. The goal is

to update Ût−1 according to (ut)it to obtain a new estimate Ût, to be updated at time t + 1
from (xt+1)ωt+1, and so on. However, to ease the notation we will drop the subscript t with the
understanding that the updating process is repeated iteratively.

Without any further assumptions on i and U, this problem is ill-posed. For instance, for
any subspace U in general position, and any candidate set κ ⊂ {1, . . . , d} with fewer than r + 1
elements, we have Uκ = R|κ|. This implies that any incomplete vector xκ will perfectly fit in Uκ
(regardless of whether the entries in κ are inliers or outliers). In such case, since xκ ∈ Uκ, the
update in U would be zero. Consequently, a fundamental requirement of subspace tracking is
that xω contains at least r + 1 inlier entries (so that we can update U). Hence, we will assume
without loss of generality that



(A1) The set of inliers i contains more than r elements.

On the other hand, consider subspaces U,U′ that are only supported on the first r + 1
coordinates. Then we would be unable to track U unless the set of inliers i includes those
coordinates. To rule out scenarios like this, typical completion results require low coherence
and uniform sampling [1, 2, 14]. However, as discussed above, these assumptions do not hold
in many settings. Hence, to avoid these issues, we will assume that U and U′ are in general
position. More precisely, we will assume:

(A2) U and U′ are drawn independently according to an absolutely continuous distribution
with respect to the uniform measure on the Grassmann manifold of r-dimensional
subspaces of Rd.

A2 essentially requires that U and U′ are generic subspaces. Similar sorts of genericity
assumptions have been used to study standard LRMC and related problems [15–22].

3. ERASURE ALGORITHM

Notice that if we knew the set of inliers i, then we would know which entries of xω correspond
to u, and we would be able to update U using the results in [13], which precisely address how
to update a subspace according to an incomplete vector. In fact, [13] shows that moving U a

step of length η in the direction of ui results in the subspace Û spanned by

U +

(
(cos(ση)− 1)

û

‖û‖
+ sin(ση)

r

‖r‖

)
θT

‖θ‖
, (2)

where

· U ∈ Rd×r is an orthogonal basis of U,

· θ = (UT
i Ui)

−1UT
i ui is the coefficient of ui with respect to Ui (notice that A1 and A2

guarantee that UT
i Ui is invertible).

· û = Uθ is the completion of ui,

· ri = ui − ûi is the residual of ui,

· r ∈ Rd is the padded residual, which has the entries of ri in the locations of i, and zeros
elsewhere,



· σ = ‖û‖‖r‖, and

· ‖ · ‖ denotes the euclidian norm.

The challenge is that we don’t know the set of inliers i. Hence, we will focus on identifying
i, with the understanding that after this, we can update U according to (2).

Using now standard convex relaxation techniques, [1] suggests to find i by solving the fol-
lowing convex optimization:

min
θ∈Rr

‖Uωθ − xω‖1, (3)

where ‖ · ‖1 denotes the `1-norm, given by the sum of absolute values. The insight behind (3) is
that the `1-norm will favor solutions with many entries close to zero. We know that the entries
in (Uiθ − xi) are small. Hence, if |i| > |ic| (most entries of ω are inliers), we can expect (3) to
produce a solution θ such that most entries in (Uωθ− xω) are close to zero, at which point we
can find i by inspection: the small entries in (Uωθ − xω).

However, as we will see, if |i| ≤ |ic| (most entries of ω are outliers), then (3) will produce a
solution θ that minimizes most entries in (Uωθ−xω). In general, such solution will not produce
a vector (Uωθ − xω) with near-zero entries, whence i can no longer be found by inspection, as
before.

Hence, instead of searching for a coefficient θ that explains most entries of xω, we propose
to search for i directly, by finding a subset of entries κ ⊂ ω where xκ is close to Uκ (indicating
that the entries in κ are inliers). To this end, let Pκ = Uκ(UT

κUκ)−1UT
κ denote the projection

operator onto Uκ. Recall that ‖Pκxκ‖−‖xκ‖ ≤ 0 with equality iff xκ ∈ Uκ. In fact, ‖Pκxκ‖−
‖xκ‖ is close to zero iff xκ is close to Uκ, and ‖Pκxκ‖ − ‖xκ‖ is far from zero iff xκ is far from
Uκ. Hence we want to find a set κ ⊂ ω that maximizes ‖Pκxκ‖ − ‖xκ‖.

On the other hand, recall that if |κ| ≤ r, then xκ will trivially lie in Uκ (see the discussion
above A1), whence ‖Pκxκ‖−‖xκ‖ = 0. Consequently, any set κ with fewer than r elements will
trivially maximize ‖Pκxκ‖ − ‖xκ‖, regardless of whether the entries in κ are inliers or outliers.
It follows that only sets κ with more than r elements are meaningful, in the sense that they may
reveal i.

To summarize, we want to find a set κ with more than r elements such that ‖Pκxκ‖−‖xκ‖ ≈
0. Moreover, we want to find the largest such set κ, so that it contains most of the elements in
i. More precisely, we propose to solve:

ı̂ := arg max
κ⊂ω:
|κ|>r

|κ| such that ‖Pκxκ‖ − ‖xκ‖ < −η
|κ|
d
, (4)

where η denotes is a parameter quantifying the distance between U and U′ (i.e., how fast U

changes with time). The term |κ|
d

is just weighting that by the fraction of entries in κ. If
κ ∩ ic = ∅ (all entries in κ are inliers), we can expect the difference between the norms of

xκ and its projection onto Uκ to be smaller than η |κ|
d

(close to zero). On the other hand, if



κ ∩ ic 6= ∅ (some entries in κ are outliers), we can expect the difference between the norms of

xκ and its projection onto Uκ to be larger than η |κ|
d

(far from zero).

Hence, the solution to (4) should recover the desired set of inliers i. Unfortunately, (4) is
non-convex, and in general NP-hard. Hence, we propose a top-down erasure approach to try
to solve (4). The main idea is to start our search with κ = ω, and then iteratively remove
the entries (coordinates) of κ that most increase the gap between ‖Pκxκ‖ and ‖xκ‖ (hence the
term erasure). We stop this procedure when ‖Pκxκ‖ is close to ‖xκ‖.

More precisely, we initialize κ = ω, and we iteratively redefine κ as the set κ\k, where

k = arg max
k∈κ

‖Pκ\kxκ\k‖ − ‖xκ\k‖.

In words, k is the coordinate in κ such that if ignored, the gap between the remaining vector
xκ\k and its projection Pκ\kxκ\k is reduced the most. Each iteration we remove (erase) such
coordinate k from κ. The intuition behind this approach is that the outlier entries in κ are
more likely to increase the gap between ‖Pκxκ‖ and ‖xκ‖.

Recall that if |κ| ≤ r, then xκ trivially lies in Uκ (see discussion above A1), whence ‖Pκxκ‖−
‖xκ‖ = 0. Hence the procedure above is guaranteed to terminate after at most ‖ω‖−r iterations.
If |κ| = r, then we know that we were unable to find i (or a subset of it). One alternative is to
start with a different κ ( ω, and search again.

The erasure procedure may remove some inlier entries along the way, so in general, the
output of this procedure will be a set κ ⊂ i. However, finding a subset of i is enough to find
i. To see this, recall that since xi = ui lies in U′i, there is a coefficient vector θ′ ∈ Rr such

Algorithm 1: Selective Erasure Robust Subspace Tracking.

Input: Subspace basis U ∈ Rd×r, partially observed data vector xω, update step η.
Initialize: κ = ω. Recall that Pκ = Uκ(UT

κUκ)−1UT
κ is the projection operator onto Uκ.

Erasure: repeat until ‖Pκxκ‖ − ‖xκ‖ < −η |κ|d :

k = arg max
k∈κ

‖Pκ\kxκ\k‖ − ‖xκ\k‖,

κ = κ\k,

Refinement of κ :
Complete: û = U(UT

κUκ)−1UT
κxκ.

Estimate inliers as entries close to û :

ı̂ =
{

i ∈ ω : |xi − ûi| <
η

d

}
.

Update: New subspace Û is spanned by (2), with ı̂ instead of i.

Output: Updated subspace Û.



that xi = U′iθ
′. Since κ ⊂ i, it follows that xκ = U′κθ

′. Furthermore, since |κ| ≥ r, we
can find θ′ as θ′ = (U′TκU

′
κ)−1U′Tκxκ. Since U is close to U′, we know that xi ≈ Uiθ, where

θ = (UT
κUκ)−1UT

κxκ. At this point we can identify i by simple inspection (the entries in xω
that are close to ûω := Uωθ).

Once i is identified, we update U according to (2). The whole procedure is summarized in
Algorithm 1.

4. EXPERIMENTS

We now present a series of experiments to analyze the performance of Algorithm 1, and compare
it with the state-of-the-art `1-minimization approach.

In our experiments, we first generated a matrix U ∈ Rd×r with i.i.d. N (0, 1) entries, to use
as a basis of U. Next we added i.i.d. N (0, η2) entries to U to obtain a new matrix U′ ∈ Rd×r,
which we will use as basis of U′; here d = 100 and r = 5. The parameter η models the distance
between U′ and U. Then we generated a coefficient vector θ′ ∈ Rr with i.i.d. N (0, 1) entries to
construct the inlier vector u = U′θ′.

Notice that the problem only depends on ω (the set of observed entries in x) through i
(the set of inlier entries). Given i, changing ω only changes ic (the set of outliers). In fact,
given i, enlarging ω (observing more entries in x) equates to having more outliers, which can
only complicate the identification of inliers. In our experiments we will consider the most
complicated scenario. That is, we will draw i ⊂ {1, . . . , d} randomly, and set ω = {1, . . . , d}
such that ic := ω\i is as large as possible.

Finally, we generated the outlier vector v ∈ Rd with i.i.d. N (0, 1) entries, and constructed
the observed vector x according to (1).

Recall that once the set of inlier entries i is known, we can update U according to (2). Hence,
the performance of Algorithm 1 depends entirely on its ability to identify i. With this in mind,
our first experiment will tests the accuracy of our approach to identifying the set of inliers i as a
function of the fraction of outliers q := |ic|

|ω| and the distance η between U and U′. We considered
a success if the set of inliers i was identified exactly. The results are summarized in Figure 1,
where we repeated the simulation above 100 trials for each pair (q, η). We can see that our
approach outperforms the state-of-the-art method (`1-minimization), specially when there are
more outliers than inliers (q ≥ 1

2
).

Notice that as η increases, U and U′ become more separated, whence ui ∈ U′i gets farther
from Ui, up to the point where even vi is closer to U. In other words, as η increases, u becomes
more an outlier than an inlier, and vice-versa for v. This way, η encodes the amount of the noise.
Figure 1 shows, the performance of our erasure approach decays nicely as η (noise) increases.

The experiment in Figure 1 only counts success or failures. In our experiments we also
kept track of the error, measured as the ratio of misclassified entries (misclassified inliers +
misclassified outliers) vs. number of inliers. The top of Figure 2 shows two slices of Figure
1 corresponding to low noise (η = 10−9) and larger noise (η = 10−3). The bottom of Figure
2 shows the corresponding error in each of these cases. Pay attention to the right side of the
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Figure 1: Percentage of times (average over 100 trials) that the set of inliers i was identified exactly
as a function of the fraction of outliers and η, which encodes the information of the noise and the
distance between subspaces U and U′. The lightest color represents 100% success rate, and the darkest
represents 0%.
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Figure 2: Top: Percentage of times (average over 100 trials) that the set of inliers i was identified
exactly as a function of the fraction of outliers, for low noise (η = 10−9) and larger noise (η = 10−3).
The higher the better. Bottom: Error (misclassified entries; average over 100 trials) as a function of
the fraction of outliers. The lower the better.

plots (fraction of outliers > 1
2
). Notice that if the noise is small (η = 10−9), both approaches

make about the same amount of mistakes, but if the noise is larger (η = 10−3), then the error
of `1-minimization grows exponentially, while the error of our approach stays constant.

In our final experiment we study the accuracy of Algorithm 1 at tracking a subspace. First we
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Figure 3: Distance over time between the subspace U′ that we aim to track, and the subspace estimate
Û produced by our erasure algorithm, by `1-minimization, and by an ideal algorithm that knows exactly
which entries are inliers.

generate U and U′ as before, and initialize our subspace estimate Û as U. Then at each time we
generate u ∈ U′, v ∈ Rd, i, and x, as described before. Next we obtain a new estimate Û using
Algorithm 1 and `1-minimization (we use `1 minimization to find inliers, followed (2) to update

the subspace). Finally, we record the distance between Û and U′ over time, measured as the
Frobenius norm of the difference between their projector operators. The results are summarized
in Figure 3, where we also compare to an ideal update, which knows exactly which entries are
inliers.

Consistent with our previous experiments, if fewer than 50% of the entries are outliers, then
both algorithms have perfect performance (their performance is equal to the ideal update, which
knows which entries are inliers). However, if 50% or more of the entries are outliers, the state-of-

the-art solution (`1-minimization) starts failing severely, up to the point where Û starts getting
farther and farther from U′. In contrast, the performance of Algorithm 1 decays nicely with the
number of outliers, and its estimate Û never gets farther from U′.
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