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Abstract— This paper is about an interesting phenomenon:
two r-dimensional subspaces, even if they are orthogonal to
one an other, can appear identical if they are only observed
on a subset of coordinates. Understanding this phenomenon
is of particular importance for many modern applications of
subspace clustering where one would like to subsample in
order to improve computational efficiency. Examples include
real-time video surveillance and datasets so large that cannot
even be stored in memory. In this paper we introduce a new
metric between subspaces, which we call partial coordinate
discrepancy. This metric captures a notion of similarity between
subsampled subspaces that is not captured by other distance
measures between subspaces. With this, we are able to show
that subspace clustering is theoretically possible in lieu of
coherence assumptions using only r + 1 rows of the dataset
at hand. This gives precise information-theoretic necessary and
sufficient conditions for sketched subspace clustering. This can
greatly improve computational efficiency without compromising
performance. We complement our theoretical analysis with
synthetic and real data experiments.

I. INTRODUCTION

In subspace clustering (SC), one is given a data matrix
X whose columns lie in the union of several (unknown) r-
dimensional subspaces, and aims to infer these subspaces
and cluster the columns in X accordingly [1]. The union of
subspaces model is a powerful and flexible model that applies
to a wide variety of practical applications, ranging from
computer vision [2] to network inference [3], [4], compres-
sion [5], recommender systems and collaborative filtering [6],
[7]. Hence there is growing attention to this problem. As a
result, existing theory and methods can handle outliers [8]–
[13], noisy measurements [14], privacy concerns [15], data
constraints [16], and missing data [17]–[21], among other
difficulties.

Yet, in many relevant applications, such as real-time video
surveillance, or cases where X is too large to even store
in memory, SC remains infeasible due to computational
constraints. In applications like these, it is essential to handle
big datasets in a computationally efficient manner, both in
terms of storage and processing time.

Fortunately, studies regarding missing data show that
under this model, very large datasets can be accurately
represented using a very small number of its entries [17]–
[21]. With this in mind, recent studies (e.g., [22]) explore the
idea of projecting the data (e.g., subsampling or sketching) as
alternatives to reduce computational costs (time and storage).

On this matter, it was recently shown that if the sub-
spaces are sufficiently incoherent and separated, and the
columns are well-spread over the subspaces, then the popular

Fig. 1: Left: The columns in X (represented by points) lie in the
union of two 1-dimensional subspaces in R3. We want to cluster
these points using only a few coordinates (to improve computational
costs). This can be done if we use coordinates (y, z), as in the
center. The main difficulty is that the subspaces may be equal in
certain coordinates. In this example, the subspaces are equal on
the (x, y) coordinates. So if we use coordinates (x, y), as in the
right, then all columns will appear to lie in the same subspace,
and clustering would be impossible. We do not know beforehand
the coordinates in which the subspaces are different. Searching for
such coordinates could result in combinatorial complexity, defeating
the purpose of subsampling.

sparse subspace clustering (SSC) algorithm [23] will find the
correct clustering using certain sketches of the data (e.g.,
gaussian projection, row subsampling, and the fast Johnson-
Lindenstrauss transform) [24]. However, in general, these
conditions are unverifiable.

In this paper we show that almost every X can be theo-
retically clustered using as few as r + 1 rows (the minimum
required) of a generic rotation of X. The subtlety of this
result is that the underlying subspaces may be equal in
certain coordinates. This means that if we sample a column
of X in a set of coordinates where the underlying subspaces
are equal, one would be unable to determine (based on these
observations) to which subspace it truly belongs. See Figure
1 to build some intuition.

To give a concrete example, consider images as in Figure
2. It has been shown that the face images of the same indi-
vidual under varying illumination lie near a low-dimensional
subspace [25]. Hence SC can be used to classify faces.
However, some coordinates (e.g., the corner pixels) are
equal across many individuals. If we only sampled those
coordinates, we would be unable to cluster. Moreover, those
coordinates would only obstruct clustering while consuming
computational resources.

To the best of our knowledge, none of the existing distance
measures between subspaces captures this notion of partial
coordinate similarity. For instance, Example 1 in Section
II shows that orthogonal subspaces (maximally apart with



Fig. 2: Images from the Extended Yale B dataset [26]. Each row
has images of the same individual under varying illumination.
The vectorized images of each individual lie near a 9-dimensional
subspace [25], so the whole dataset lies near a union of subspaces.
Some coordinates (e.g., the corner pixels) are equal across many
individuals. If we only sampled those coordinates, we would be
unable to subspace cluster.

respect to the principal angle distance, the affinity distance,
and the subspace incoherence distance [10]) can be identical
in certain coordinates. In this paper we study this phe-
nomenon to derive precise information-theoretic necessary
and sufficient conditions for sketched subspace clustering.

To this end we first introduce a new distance measure
between subspaces that captures this relationship between
subspaces, which we call partial coordinate discrepancy.
This allows us to show that if we generically rotate X,
its columns will lie in subspaces that are different on all
subsets of more than r coordinates with probability 1. In
other words, generic rotations maximize partial coordinate
discrepancy. This will imply that X can be clustered using
only a sketch, that is, a few rows of a generic rotation of X.
We complement our theoretical analysis with experiments
using synthetic and real data, showing the performance and
advantages of sketching.

Organization of the paper

In Section II we formally state the problem, introduce our
new distance measure between subspaces, and give our main
results. In Section III we make several remarks about our
distance measure. In Section IV we present experiments to
support our results. We leave all proofs to Section V.

II. MODEL AND MAIN RESULTS

Let U ∶= {Sk}Kk=1 be a set of r-dimensional subspaces of
Rd, and X be a d × n data matrix whose columns lie in the
union of the subspaces in U. Let Xk denote the matrix with
all the columns of X corresponding to Sk. Assume:

A1 The columns of Xk are drawn independently ac-
cording to an absolutely continuous distribution
with respect to the Lebesgue measure on Sk.

A2 Xk has at least r + 1 columns.

Fig. 3: Typical SC assumptions require (i) that the subspaces are
sufficiently separated; this would discard subspaces that are too
close, as in the top-left, (ii) that the subspaces are sufficiently
incoherent; this would discard subspaces that are too aligned with
the canonical axes, as in the top-left, and (iii) that the columns
of Xk are well-spread over Sk, as in the top-right; this would
discard cases where the distribution of columns over Sk is skewed,
as in the bottom (left and right) [10]. In contrast, assumption A1
allows any collection of subspaces, including nearby and coherent
subspaces, as in the top-left. A1 only requires that the columns of
Xk are drawn generically, as in the top-right and bottom-left. A1
excludes ill-conditioned samples with Lebesgue measure zero, as
in the bottom-right, where all columns lie in a line (when Sk is a
plane).

A1 essentially requires that the columns in Xk are drawn
generically from Sk. This allows nearby and coherent sub-
spaces, and skewed distributions of the columns. In contrast,
typical SC assumptions require that the subspaces are suf-
ficiently separated, that Sk is incoherent (not too aligned
with the canonical axes), and that the columns are well-
spread over Sk. See Figure 3 to build some intuition. A2 is a
fundamental requirement for subspace clustering, as K sets
of r columns can be clustered into K arbitrary r-dimensional
subspaces.

Recall that we want to cluster X using only a few of its
rows. The restriction of an r-dimensional subspace in general
position to ` ≤ r coordinates is simply R`. So if X is sampled
on r or fewer rows, any subspace in general position would
agree with all the subsampled columns, making clustering
impossible. It follows that X must be sampled on at least
` = r + 1 rows in order to be clustered. In other words,
` = r+1 rows are necessary for sketched subspace clustering.
We will now show that X can be clustered using only this
bare minimum of rows, i.e., that ` = r+1 is also theoretically
sufficient. To this end, we first introduce our new notion of
distance between subspaces, which we call partial coordinate
discrepancy.

Let [d]` denote the collection of all subsets of {1, . . . , d}
with exactly ` distinct elements. Let Gr(r,Rd) denote the
Grassmann manifold of r-dimensional subspaces in Rd, and
let 1{⋅} denote the indicator function. For any subspace,



matrix or vector that is compatible with a set ω ∈ [d]`,
we will use the subscript ω to denote its restriction to the
coordinates/rows in ω. For example, Xω ∈ R`×n denotes the
restriction of X to the rows in ω, and Skω ⊂ R` denotes the
restriction of Sk to the coordinates in ω.

Definition 1. Given S,S′ ∈ Gr(r,Rd), define the partial
coordinate discrepancy between S and S′ as:

δ(S,S′) ∶=
1

(
d
r+1

)
∑

ω∈[d]r+1
1{Sω≠S′ω}.

Example 1. Consider the following 1-dimensional sub-
spaces:

S = span

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
1
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

S′ = span

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1

−1
−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then δ(S,S′) = 4
6

, because if ω = {1,2} or ω = {3,4},
then Sω = S′ω = span[1 1]T, but for any of the other 4
choices of ω, Sω ≠ S′ω . In other words, S and S′ would
appear to be the same if they were only observed on the
first two or the last two coordinates/rows. Notice that S
and S′ are orthogonal (maximally apart with respect to
the principal angle distance, the affinity distance, and the
subspace incoherence distance [10]), yet they are identical
when restricted to certain coordinates.

Remark 1. Notice that δ takes values in [0,1]. One can
interpret δ as the probability that two subspaces are different
on r + 1 coordinates chosen at random. For instance, if two
subspaces are drawn independently according to the uniform
measure over Gr(r,Rd), then with probability 1 they will
have δ = 1.

Example 1 shows that even orthogonal subspaces can
appear identical if they are only sampled on a subset of co-
ordinates. Existing measures of distance between subspaces
fail to capture this notion of partial coordinate similarity. In
contrast, δ is a distance measure (metric) that quantifies the
partial coordinate similarity of two subspaces when restricted
to subsets of coordinates. We formalize this in the next
lemma. The proof is given in Section V.

Lemma 1. Partial coordinate discrepancy is a metric over
Gr(r,Rd).

Lemma 1 implies that two different subspaces must be
different on at least one set ω with r + 1 coordinates.
If subspaces S,S′ ∈ U are different on ω, then columns
corresponding to S and S′ can be subspace clustered using
only Xω by iteratively trying combinations of r+1 columns
in Xω . This is because under A1, a set of r + 1 columns in
Xω will be linearly dependent if and only if they correspond
to the same subspace in U. This implies that we can cluster
X using only r+1 rows. The challenge is to determine which

rows to use. If the subspaces in U have δ = 1 (i.e., they are
different on all subsets of r + 1 coordinates), then we can
cluster X using any set of r + 1 rows. But if δ is small, we
would need to use the right rows, which could be hard to
find. This matches the intuition that subspaces that are very
similar are harder to cluster.

Fortunately, we will show that generic rotations yield
maximal partial coordinate discrepancy. In other words, we
will see that if we generically rotate the subspaces in U, then
the rotated subspaces will be different on all subsets of r+1
coordinates. This will imply that we can cluster X using
any r+1 rows of a generic rotation of X. To formalize these
ideas, let Γ ∶ Rd → Rd denote a rotation operator. Assume

A3 The rotation angles of Γ are drawn independently
according to an absolutely continuous distribution
with respect to the Lebesgue measure on (0,2π).

Essentially, A3 requires that Γ is a generic rotation. Equiv-
alently, Γ can be considered as a generic d × d orthonormal
matrix. Rotating X equates to left multiplying it by Γ.
Similarly, the rotation of a subspace S by Γ (which we
will denote by ΓS) is given by span{ΓU}, where U is
a basis of S. The next lemma states that rotating subspaces
by a generic rotation yields subspaces with maximal partial
coordinate discrepancy. The proof is given in Section V.

Lemma 2. Let Γ denote a rotation operator drawn accord-
ing to A3. Let S,S′ be different subspaces in Gr(r,Rd).
Then δ(ΓS,ΓS′) = 1 with probability 1.

Lemma 2 states that regardless of δ(S,S′), we can rotate
S and S′ to obtain new subspaces with maximal partial
coordinate discrepancy (i.e., subspaces that are different on
all subsets of r + 1 coordinates). See Figure 4 for some
insight. Intuitively, a generic rotation distributes the local
differences of S and S′ across all coordinates. So as long as
S ≠ S′, then (ΓS)ω will differ (at least by a little bit) from
(ΓS′)ω for every ω ∈ [d]`, with ` > r. This implies that ΓX
can be perfectly clustered using any subset of ` > r rows of
ΓX (and clustering ΓX is as good as clustering X). This is
summarized in our main result, stated in the next theorem.
The proof is given in Section V.

Theorem 1. Let A1-A3 hold, and let ω ∈ [d]`, with
` > r. Let X′ be a subset of the columns in X. Transform
and row-subsample X′ to obtain (ΓX′

)ω . Then with
probability 1, the columns in X′ lie in an r-dimensional
subspace of Rd if and only if the columns in (ΓX′

)ω
lie in an r-dimensional subspace of R`.

Theorem 1 states that theoretically, X can be clustered
using any r + 1 rows of a generic rotation X′

∶= ΓX. Under
A1-A3, perfectly clustering X′

ω is theoretically possible with
probability 1 by iteratively trying combinations of r + 1



Fig. 4: Left: Two different subspaces (even orthogonal) can appear
identical if they are only observed on a subset of coordinates. In
this figure, S and S′ are identical if they are only observed on
the (x, y) coordinates (top view). Right: Lemma 2 shows that if
we rotate S and S′ generically, the rotated subspaces ΓS and ΓS′

will be different on all subsets of more than r coordinates. In this
figure, the rotated subspaces ΓS and ΓS′ are different in all sets
of r + 1 = 2 coordinates, including the (x, y) plane.

columns in X′
ω and verifying whether they are rank-r. This

is because under A1 and A3, a set of r + 1 columns in X′
ω

will be linearly dependent if and only if they correspond
to the same subspace. Nonetheless, this combinatorial SC
algorithm can be computationally prohibitive, especially for
large n.

In practice, we can use an algorithm such as sparse
subspace clustering (SSC) [23]. This algorithm enjoys state-
of-the-art performance, works well in practice, and has
theoretical guarantees. The main idea behind SSC is that
a column x in X lying in subspace S can be written as a
linear combination of a few other columns in S (in fact, r or
fewer). In contrast, it would require more columns from other
subspaces to express x as their linear combination (as many
as d). So SSC aims to find a sparse vector c ∈ Rn−1, such
that x = (X/x)c. Here X/x denotes the d × (n − 1) matrix
formed with all the columns in X except x. The nonzero
entries in c index columns from the same subspace as x.
SSC aims to find such vector c by solving

argmin
c∈Rn−1

∥c∥1 s.t. x = (X/x)c, (1)

where ∥⋅∥1 denotes the 1-norm, given by the sum of absolute
values. SSC then uses spectral clustering on these coefficients
to recover the clusters.

Unfortunately, the solution to (1) is not exact. In fact, a
typical solution to (1) will have most entries close to zero,
and only a few (yet more than r) relevant entries. If we only
use ` = r + 1 rows, the location of the relevant entries in c
will be somewhat meaningless in the sense that they could
correspond to columns from different subspaces, as it takes
at most r + 1 linearly independent columns to represent a
column in Rr+1.

As the number of rows ` grows, the relevant entries in
c are more likely to correspond to columns from the same
subspace as x. On the other hand, as ` grows, so does the
computational complexity of (1). Without subsampling the
rows, the computational complexity of SSC is O(dn3). In
contrast, using ` > r rows, the computational complexity of
SSC will only be O(`n3). Depending on d,n and r, this can
bring substantial computational improvements. We thus want

` to be large enough such that the relevant entries in c reveal
clusters of X, but not so large that (1) is too computationally
expensive.

In fact, we know from Wang et al. [24] that SSC will find
the correct clustering using only ` = O(r log(rK2

) + logn)
rows if the following conditions hold (see Figure 3 to build
some intuition):
(i) The angles between subspaces are sufficiently large.

(ii) The subspaces are sufficiently incoherent with the
canonical basis, or the data is transformed by a gaussian
projection or by the fast Johnson-Lindenstrauss trans-
form [27].

(iii) The columns of Xk are well-spread over Sk.
On the other hand, Theorem 1 states that theoretically it is
possible to cluster X using only ` = r+1 rows, in lieu of these
conditions. This reveals a gap between theory and practice
that we further study in our experiments.

We have shown that theoretically, conditions (i)-(iii) are
sufficient but not necessary. It remains an open question
whether there exists a polynomial time algorithm that can
provably cluster without these requirements.

III. ABOUT δ AND OTHER DISTANCES

In this section we make several remarks about partial
coordinate discrepancy and its relation to other distances
between subspaces. First recall the definition of principal
angle distance between two subspaces [28].

Definition 2 (Principal angle distance). Let S,S′ be sub-
spaces in Gr(r,Rd) with orthonormal bases U,U′. The
principal angle distance between S and S′ is defined as

θ(S,S′) ∶= ∥UT
⊥U

′
∥2,

where U⊥ is an orthonormal basis of S⊥.

It is intuitive that when data are generated from subspaces
that are close to one another, it is difficult to cluster these
data correctly. Typically, other results use the principal angle
distance to measure how close subspaces are. For example,
in the previous section we discussed that if conditions (i)-
(iii) hold, then O(r log(rK2

)+ logn) rows are sufficient for
clustering [14]. Condition (i) essentially requires that θ is
sufficiently large.

The partial coordinate discrepancy δ is an other useful
metric. Here we used it to show that theoretically, r+1 rows
are necessary and sufficient for clustering in lieu of these
assumptions. We now wish to compare δ and θ. We will see
that subspaces close in one metric can in general be far in
the other. We believe this is an important observation for
bridging the gap between the sufficient oversampling of the
rows required when using θ and the necessary and sufficient
condition of Theorem 1.

In our study, we will analyze δ using bases of subspaces,
so let us first show that δ shares the important property of
being basis independent. To see this, let U,U′

∈ Rd×r denote
bases of S,S′. Notice that Sω = S′ω if and only if there exists
a matrix B ∈ Rr×r such that U′

ω = UωB. Now suppose that
instead of U, we choose an other basis V of S. Since U



and V are both bases of S, there must exists a full-rank
matrix Θ ∈ Rr×r such that U = VΘ. As before, Sω = S′ω if
and only if there exists a matrix B′

∈ Rr×r such that U′
ω =

VωB′. Now observe that if ∃ B such that U′
ω = UωB, then

∃ B′ (namely B′
= ΘB) such that U′

ω = VB′. Similarly, if
∃ B′ such that U′

ω = VωB′, then ∃ B (namely B = Θ−1B′)
such that U′

ω = UωB.
With this, we can now study the relationship between

partial coordinate discrepancy and principal angle distance.
The next example shows that two subspaces may be close
with respect to θ, but far with respect to δ.

Example 2 (Small θ may coincide with large δ). Consider
a subspace S spanned by U ∈ Rd×r. Let ε > 0 be given, and
let U′

= U + ε. It is easy to see that θ(S,S′)→ 0 as ε→ 0.
In contrast, δ(U,U′

) = 1 for every ε.

Conversely, the next example shows that two subspaces
may be close with respect to δ, but far with respect to θ.

Example 3 (Small δ may coincide with large θ). Consider
two subspaces S,S′ ∈ Gr(r,Rd) spanned by

U =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

I
I
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and U′
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

I
−I
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

where I denotes the identity matrix. For r ≪ d, δ(S,S′)
will be close to zero, because the two subspaces differ on
only r + 1 subsets of the first 2r coordinates. However, the
subspaces are orthogonal and so the principal angle distance
is maximal; θ(S,S′) = 1.

Examples 2 and 3 show that in general, subspaces close
in one metric can be far in the other. However, for subspaces
that are incoherent with the canonical axes, there is an
interesting relation between δ and θ. Recall that coherence
is a parameter indicating how aligned a subspace is with the
canonical axes [29]. More precisely,

Definition 3 (Coherence). Let S ∈ Gr(r,Rd). Let PS denote
the projection operator onto S, and ei the ith canonical
vector in Rd. The standard coherence parameter µ ∈ [1, d

r
]

of S is defined as

µ ∶=
d

r
max
1≤i≤d

∥PSei∥
2
2.

Intuitively, an incoherent subspace (small µ) will be well-
spread over all the canonical directions. Equivalently, the
magnitude of the rows of its bases will not vary too much.
In this case, if δ is small, we can also expect θ to be small.
The following example demonstrates one such scenario.

Example 4 (An example where small δ, µ imply small θ).
Suppose that S and S′ are spanned by orthogonal bases
U,U′ respectively. Suppose they have η coordinates on
which they span the same subspace; for η close to d, this will
result in a small δ. Suppose the coherence for each subspace
is bounded by µ0, i.e.,

d

r
max
1≤i≤d

∥PSei∥
2
2 =

d

r
max
1≤i≤d

∥Ui∥
2
2 ≤ µ0

where Ui is the ith row of U. Further suppose that if
we subsample the basis only on the η coordinates the two
subspaces have in common, we can lower bound their inner
product:

∥

η

∑
i=1

UT
i U′

i∥

2

≥ c0
η

d
.

This is essentially another incoherence condition that will
hold with c0 ≈ 1 when the subspaces are highly incoherent
with the canonical basis. Then

θ(S,S′) ≤ 1 − (c0
η

d
− (d − η)

µ0r

d
)
2

when c0
η
d
− (d − η)µ0r

d
> 0.

From this example our intuition is confirmed: if η is very
close to d, c0 ≈ 1, and µ0 is constant, the term in the
parentheses is near 1 and the angle is small. To see how
we get the bound on θ(S,S′), first note that θ(S,S′) =

1−∥UTU′
∥22, and we can bound the second term from below.

∥UTU′
∥2 = ∥

d

∑
i=1

UT
i U

′

i∥

2

=

XXXXXXXXXXX

η

∑
i=1

UT
i U′

i +
d

∑
i=η+1

UT
i U

′

i

XXXXXXXXXXX2

≥ c0
η

d
−

XXXXXXXXXXX

d

∑
i=η+1

UT
i U

′

i

XXXXXXXXXXX2

(2)

≥ c0
η

d
−

d

∑
i=η+1

∥Ui∥2 ∥U
′

i∥
2
≥ c0

η

d
− (d − η)

µ0r

d

where we used the triangle inequality, matrix norm inequal-
ity, and step (2) follows by assumption.

This illustrates a case where, if the subspaces in U have
low coherence and their partial coordinate discrepancy is
small, the angle between them will also be small.

Existing analyses show that practical SC algorithms tend
to fail if θ is small [23]. It follows that for incoherent
subspaces, if δ is small, SC can be very hard in practice.
This is illustrated in Figure 5, which shows that the clustering
performance of practical algorithms declines as δ decreases.

IV. EXPERIMENTS

Theorem 1 shows that one can cluster X using only r + 1
rows of ΓX. As discussed in Section II, practical algorithms
like SSC may require more than these bare minimum number
of rows. In this section we present experiments to study
the gap between what is theoretically possible and what is
practically possible with state-of-the-art algorithms.

In Section III we also explained that for incoherent sub-
spaces, the partial coordinate discrepancy δ and the principal
angle distance θ have a tight relation: if δ is small, then
θ is small too. Existing analyses show that practical SC
algorithms tend to fail if θ is small [23]. It follows that for
incoherent subspaces, if δ is small, SC can be very hard
in practice. The experiments of this section support these
results.

In our experiments, we will compare the following ap-
proaches to subspace clustering:
(a) Cluster X directly (full-data).
(b) Cluster ` > r rows of ΓX.



To compare things vis-à-vis, we will study the cases above
using the sparse subspace clustering (SSC) algorithm [23].
We chose SSC because it enjoys state-of-the-art performance,
works well in practice, and has theoretical guarantees. In
all our experiments we use the SSC code provided by their
authors [23].

A. Simulations

We will first use simulations to study the cases above as a
function of the ambient dimension d, the partial coordinate
discrepancy δ of the subspaces in U, and the number of
rows used `. To obtain subspaces with a specific δ, we first
generated a d×r matrix V with entries drawn i.i.d. from the
standard Gaussian distribution. Subspaces generated this way
have low coherence. Then, for k = 1, . . . ,K, we selected the
kth set of δ′ rows in V (i.e., rows (k−1)δ′+1, . . . , kδ′) and
replaced them with other entries, also drawn i.i.d. from the
standard Gaussian distribution. This yields K bases, which
will span the subspaces in U. This way, the bases of any S
and S′ in U will differ on exactly 2δ′ rows. It follows that
δ(S,S′) is equal to the probability of selecting any of these
2δ′ rows in r + 1 draws (without replacement). That is,

δ(S,S′) = 1 −
(
d−2δ′

r+1
)

(
d
r+1

)
for every S,S′ ∈ U. (3)

Unfortunately, (3) gives little intuition of how small or large
δ is. We will thus upper bound δ by a small number that is
easily interpretable. To do this, we will use the next simple
bound, which gives a clear idea of how small δ is in our
experiments. A derivation is given in Section V.

δ(S,S′) ≤
(r + 1)(2δ′ − r)

d − r
= O(

rδ′

d
) . (4)

In each trial of our experiments, we generated a set U

of K = 5 subspaces, each of dimension r = 5, using the
procedure described above. Next we generated a matrix X
with nk = 100 columns from each subspace. The coefficients
of each column in X are drawn i.i.d. from the standard
Gaussian distribution. Matrices generated this way satisfy
A1 and A2. To measure accuracy, we find the best matching
between the identified clusters and the original sets.

In our first simulation we study the dependency on δ′

(which gives a proxy of δ through (4)) and `, with d = 105

fixed. The results are summarized in Figure 5 (top-left). This
figure shows the gap between theory and practice. Theorem
1 shows that theoretically, all these trials can be perfectly
clustered. This figure shows, as predicted in Section III,
that for incoherent subspaces, clustering becomes harder in
practice as δ′ (and hence δ) shrinks. Observe that as δ′ grows,
fewer rows suffice for accurate clustering. For example, in
this experiment, SSC consistently succeeds with ` = δ′.

Next we study the cases above as a function of d and
δ′, with ` = δ′. The results are summarized in Figure
5 (top-right). This also shows a gap between theory and
practice. Figure 5 shows, as predicted in Section III, that
for incoherent subspaces, if δ′ (and hence δ) is too small,
the angle between the subspaces in U will be small, whence

Fig. 5: Proportion of correctly classified points by SSC, using only
` > r rows of ΓX, with K = 5 subspaces, each of dimension
r = 5, and nk = 100 columns per subspace. The color of each
pixel indicates the average over 100 trials (the lighter the better).
White represents 100% accuracy, and black represents 20%, which
amounts to random guessing. Theorem 1 states that theoretically,
all these trials can be perfectly clustered. This shows a gap between
theory and practice. Top-Left: Transition diagram as a function of
δ′ (which gives a proxy of the partial coordinate discrepancy δ
through (4)), and the number of used rows `, with fixed ambient
dimension d = 105. As discussed in Section III, for incoherent
subspaces, clustering becomes harder in practice as δ′ shrinks.
Observe that as δ′ grows, fewer rows suffice for accurate clustering.
Top-Right: Transition diagram as a function of d and δ′, using only
` = δ′ rows. All pixels above the black point in each column have
at least 95% accuracy. These points represent the minimum δ′ and
` required for a clustering accuracy of at least 95%. As discussed
in Section III, for incoherent subspaces, if δ′ (and hence δ) is too
small, the angle between the subspaces in U will be too small,
whence clustering can be hard in practice. Bottom-Left: Partial
coordinate discrepancy δ (upper bounded by ≤ O(rδ′/d)) and
fraction of rows `/d required by 3SC for a clustering accuracy of at
least 95%. The curve is the best exponential fit to these points. This
curve represents the discriminant between 95% accuracy (above
curve) and less than 95% accuracy (below curve). This shows that
for incoherent subspaces, as d grows, one only requires a vanishing
partial coordinate discrepancy δ and a vanishing fraction of rows
`/d to succeed. Bottom-Right: Time required to cluster X directly
(full-data), and to cluster ` = 20 rows of ΓX as a function of the
ambient dimension d (average over 100 trials). In all of these trials,
both options achieve 100% accuracy.

clustering can be hard in practice. In this experiment, we
also record the minimum δ′ and ` required for a clustering
accuracy of at least 95%. Figure 5 (bottom-left) shows that
for incoherent subspaces, as d grows, one only requires a
vanishing partial coordinate discrepancy δ and a vanishing
fraction of rows `/d to succeed.

In our last simulation we study the computation time
required required to cluster X directly (full-data), and to
cluster ` = 20 rows of ΓX as a function of d. In this
experiment, we fix ` = δ′ = 20, known from our previous
experiment to produce 100% accuracy for a wide range
of d. Unsurprisingly, Figure 5 (bottom-right) shows that if



we only use a constant number of rows, the computation
time is virtually unaffected by the ambient dimension, unlike
standard (full-data) algorithms. This can thus bring computa-
tional complexity orders of magnitude lower (depending on
d and n) than standard (full-data) techniques.

B. Real Data

We now evaluate the performance of sketching on a real
life problem where the phenomenon of partial coordinate
similarity arises naturally: classifying faces. To this end we
use the Extended Yale B dataset [26], which consists of face
images of 38 individuals with a fixed pose under varying
illumination (see Figure 6). As discussed in [23], shadows
and specularities in these images can be modeled as sparse
errors. So as a preprocessing step, we first apply the aug-
mented Lagrange multiplier method [30] for robust principal
component analysis on the images of each individual (using
code provided by the authors). This will remove the sparse
errors, so that the vectorized images of each individual lie
near a 9-dimensional subspace [25]. Hence, the matrix X
containing all the vectorized images images lies near a union
of 38, 9-dimensional subspaces.

Observe that these images are very similar on several
regions. For example, the lower corners are mostly dark.
Distinct subspaces can thus appear to be the same if they
are only observed on the coordinates corresponding to these
pixels. If we only use a few rows of X (without rotating),
there is a positive probability of selecting these coordinates.
In this case, we would be unable to determine the right
clustering. Fortunately, Lemma 2 shows that the columns of
a generic rotation of X will lie near a union of subspaces that
will be different on all subsets of ` > r coordinates (maximal
partial coordinate discrepancy). This implies, as shown in
Theorem 1, that the clusters of the original X will be the
same as the clusters of any ` > r rows of the rotated X. This
means that we can cluster X using any ` > r coordinates of
a rotation of X. This is verified by the following experiment.

In this experiment we study classification accuracy as
a function of the number of individuals, or equivalently
the number of subspaces K, and as a function of the
number of rows ` used for clustering. We do this replicat-
ing the experiment in [23]: we first divide all individuals
into four groups, corresponding to individuals {1, . . . ,10},
{11, . . . ,20}, {21, . . . ,30} and {31, . . . ,38}. Next we cluster
all possible choices of K ∈ {2,3,5,8,10} individuals for the
first three groups, and K ∈ {2,3,5,8} individuals for the
last group. We repeat this experiment for different choices
of `, and record the classification accuracy. The results are
summarized in Figure 6. They show that one can achieves
the same performance as standard (full-data) methods, using
only a small fraction of the data. This results in computa-
tional advantages (time and memory).

V. PROOFS

In this section we give the proofs of all our statements.

Fig. 6: Left: Proportion of correctly classified images from the
Extended Yale B dataset [26] (see Figure 2), as a function of the
number of individuals, or equivalently the number of subspaces K,
and as a function of the number of rows ` used for clustering.
In particular, ` = d = 2016 corresponds to standard (full-data)
SSC. Right: Computation time as a function of the number of
individuals K, with ` = 65 fixed (known from the center figure
to achieve the same accuracy as standard SSC). Recall that the
computational complexities of SSC and sketching are O(dn3) and
O(`n3), respectively. Here d = 2016 and n = 38K. This shows
that sketching achieves the same accuracy as standard SSC in only
a fraction of the time. This gap becomes more evident as d and n
grow, as shown in Figure 5.

Proof of Lemma 1

We need to show that δ satisfies the three properties of a
metric. Let S,S′, S′′ ∈ Gr(r,Rd).

(i) It is easy to see that if S = S′, then δ(S,S′) = 0.
To obtain the converse, suppose δ(S,S′) = 0. Let υ =

{1, . . . , r}, and let ωi = υ ∪ i, with i = r + 1, . . . , d. Take
bases U,U′ of S,S′, such that Uω1 = U′

ω1
. We can do

this because δ(S,S′) = 0, which implies Sω = S′ω for
every ω ∈ [d]r+1, including ω1. Next observe that for
i = r + 2, . . . , d, since Sωi = S′ωi

and Uυ = U′
υ , it must

be that U = U′ on the ith row (otherwise Sωi ≠ S
′
ωi

). We
thus conclude that U = U′, which implies S = S′.

(ii) That δ(S,S′) = δ(S,S′) follows immediately from
the definition.

(iii) To see that δ satisfies the triangle inequality, write:

δ(S,S′) + δ(S′, S′′) = 1

( d
r+1)

∑
ω∈[d]r+1

(1{Sω≠S′ω} + 1{S′ω≠S′′ω})

≥ 1

( d
r+1)

∑
ω∈[d]r+1

1{Sω≠S′ω∪S′ω≠S′′ω}

≥ 1

( d
r+1)

∑
ω∈[d]r+1

1{Sω≠S′′ω} = δ(S,S′′),

where the last inequality follows because {S = S′ ∩ S′ = S′′}
implies {S = S′′}, whence 1{Sω≠S′ω∪S

′
ω≠S

′′
ω} = 1{Sω≠S′′ω} =

0, and in any other case, 1{Sω≠S′ω∪S
′
ω≠S

′′
ω} = 1 ≥ 1{Sω≠S′′ω}.

◻

Proof of Lemma 2

We need to show that if S ≠ S′, then (ΓS)ω ≠ (ΓS′)ω
for every ω ∈ [d]r+1. Let U and U′ denote bases of S
and S′. Observe that (ΓS)ω = (ΓS′)ω if and only if there
exists a matrix B ∈ Rr×r such that (ΓU′

)ω = (ΓU)ωB, or
equivalently, if and only if ΓωU′

= ΓωUB, which we can
rewrite as

Γω(U
′
−UB) = 0. (5)



Let υ denote the subset with the first r elements in ω, and
i denote the last element in ω. Then we can rewrite (5) as

[
Γυ
Γi

] (U′
−UB) = 0. (6)

Since Γ is drawn according to A3, the rows in Γυ are linearly
independent with probability 1. Since U is a basis of an r-
dimensional subspace, its r columns are also linearly inde-
pendent. It follows that ΓυU is a full-rank r×r matrix. So we
can use the top block in (6) to obtain B = (ΓυU)−1ΓυU′.
We can plug this in the bottom part of (6) to obtain

Γi(U
′
−U(ΓυU)

−1ΓυU′
) = 0. (7)

Recall that (ΓυU)−1 = (ΓυU)‡/∣ΓυU∣, where (ΓυU)‡ and
∣ΓυU∣ denote the adjugate and the determinant of ΓυU.
Therefore, we may rewrite (7) as the following system of
r polynomial equations:

Γi(∣ΓυU∣U′
−U(ΓυU)

‡ΓυU′
) = 0. (8)

Observe that the left-hand side of (8) is just an other way to
write Γi(U

′
−UB), where B is in terms of U,U′ and Γυ .

Since S ≠ S′, there exists no B ∈ Rr×r such that U′
= UB.

Equivalently, (U′
−UB) ≠ 0. Since Γ is drawn according to

A3, we conclude that the left hand side of (8) is a nonzero
set of polynomials, and so (8) holds with probability zero.

Since (ΓS)ω = (ΓS′)ω if and only if (8) holds, we
conclude that with probability 1, (ΓS)ω ≠ (ΓS′)ω . Since
ω was arbitrary, we conclude that this is true for every
ω ∈ [d]r+1, as desired. ◻

Proof of Theorem 1

Recall that Xk denotes the matrix formed with all the
columns in X corresponding to the kth subspace in U. Under
A1-A2, with probability 1 the partition {Xk}Kk=1 is the only
way to cluster the columns in X into K r-dimensional
subspaces. This is because under A1, the columns in X will
lie on intersections of the subspaces in U with probability
zero. So any combination of more than r columns from
different subspaces in U will lie in a subspace of dimension
greater than r with probability 1.

Recall that [d]` denotes the set of all subsets of {1, . . . , d}
with exactly ` distinct elements, and that Γ denotes a generic
rotation drawn according to A3. Let ω ∈ [d]`, and define
(ΓU)ω as the set of rotated subspaces in U, restricted to
the coordinates in ω, i.e., (ΓU)ω ∶= {(ΓSk)ω}

K
k=1. Lemma

2 implies that all the subspaces in (ΓU)ω are different. It
is easy to see that the columns in (ΓXk)ω lie in (ΓSk)ω .
By A1 and A3, the columns in (ΓX)ω will lie on inter-
sections of the subspaces in (ΓU)ω with probability zero.
So any combination of more than r columns from different
subspaces in (ΓU)ω will lie in a subspace of dimension
greater than r with probability 1. ◻

Derivation of (4)

We want to show that

δ(S,S′) ≤
(r + 1)(2δ′ − r)

d − r
.

Recall that δ(S,S′) is the probability that S and S′ are
different on a set of r + 1 coordinates selected uniformly
at random (without replacement). In the setup of Section IV,
the bases U,U′ of S,S′ are different on exactly 2δ′ rows.
Then

δ(S,S′) = P(1 out of 2δ′ rows in r + 1 draws)

= P(
r+1

⋃
τ=1

{1 out of 2δ′ rows in τ th draw})

(a)
≤

r+1

∑
τ=1

P(1 out of 2δ′ rows in τ th draw)

(b)
=

r+1

∑
τ=1

τ−1

∑
ρ=0

P(1 out of 2δ′ rows in τ th draw ∣

ρ out of 2δ′ rows in first τ − 1 draws)⋅
P(ρ out of 2δ′ rows in first τ − 1 draws)

(c)
=

r+1

∑
τ=1

τ−1

∑
ρ=0

2δ′ − r

d − r
⋅

P(ρ out of 2δ′ rows in first τ − 1 draws),

where (a) follows by the union bound, (b) follows by the law
of total probability, and (c) follows because the probability
of selecting one of the 2δ′ distinct rows in the τ th draw
(without replacement) is smallest if τ = r + 1 and ρ = r,
which corresponds to the case where the ratio (after r draws)
of distinct rows (2δ′−r) versus equal rows (d−r) is smallest.
Continuing with the last equation, we have:

δ(S,S′) ≤
2δ′ − r

d − r

r+1

∑
τ=1

τ−1

∑
ρ=0

P(ρ out of 2δ′ rows in first τ − 1 draws)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

≤
(r + 1)(2δ′ − r)

d − r
,

as desired. ◻
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