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Abstract—Large amounts of missing data are becoming in-
creasingly ubiquitous in modern high-dimensional datasets. High-
rank matrix completion (HRMC) uses the powerful union of
subspace (UoS) model to handle these vast amounts of missing
data. However, existing HRMC methods often fail when dealing
with real data that does not follow the UoS model exactly. Here
we propose a new approach: instead of finding a UoS that fits the
observed data directly, we will find a UoS in a latent space that
can fit a non-linear embedding of the original data. Embeddings of
this kind are typically attained with deep architectures. However,
the abundance of missing data impedes the training process, as the
coordinates of the observed samples rarely overlap. We overcome
this difficulty with a novel pseudo-completion layer (in charge
of estimating the missing values) followed by an autoencoder (in
charge of finding the embedding) coupled with a self-expressive
layer (that clusters data according to a UoS in the latent space).
Our design reduces the exponential memory requirements that
are typically induced by uneven patterns of missing data. We
give exact details of our architecture, model, loss functions, and
training strategy. Our experiments on several real datasets show
that our method consistently outperforms the state-of-the-art
accuracy by more than a staggering 40%.

I. INTRODUCTION

Motivation: Missing Data. Missing data is a widespread
challenge in various fields, including epidemiology, social
sciences, finance, clinical research, computer vision, and
many more [1]-[6]. For example, missing data are observed
in epidemiology due to participant attrition and incomplete
responses during health assessments [3], while in social
science research, nonresponse bias in survey-based studies
compromises representativeness [4]. Clinical trials also face
missing data due to participant dropout [5]. In finance and
economic analysis, missing data occurs frequently, particularly
in time-series data where gaps may arise due to reporting
lags, data collection constraints, or economic events affecting
data availability [6]. In addition, computer vision encounters
missing data when input image files are corrupted.

Prior Work and Limitations. Over the years, various
methods have been developed to address missing data, but
each has limitations [7]. For instance, (1) single imputation
methods [8] can reduce the variability of the data and introduce
bias due to the assumption that one value can adequately
replace the missing ones. (2) Deletion methods [1], [9] can
lead to significant data loss and potential bias if the missing
data are not missing completely at random. (3) Model based
methods [2], [10] and (4) machine learning methods [11] are
computationally intensive and rely on the assumed underlying
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statistical model, which can lead to biased estimates and
misleading conclusions. (5) Multiple imputation methods [12],
[13] require complex statistical expertise to implement and
interpret the results correctly. (6) Hybrid methods that include
combinations of the aforementioned methods can be difficult to
analyze and implement, potentially requiring careful tuning to
balance the strengths and weaknesses of combined approaches,
and some combinations can probably yield incorrect solutions
[14]. Moreover, none of these methods can handle the large
amounts of missing data that are present in modern datasets
and that are information-theoretically feasible [15].

Instead of being evenly distributed throughout the feature
space, high-dimensional data is sometimes seen to display a
low-dimensional structure. Through the use of this structure,
observable entries can be completed by interpolating missing
values through the inference of the underlying structure. Such
completion tasks typically make use of linear subspaces,
as exemplified by Low-rank Matrix Completion (LRMC)
techniques [16].

High-rank Matrix Completion (HRMC) approaches are
more effective at approximating modern datasets, which
frequently exhibit complexities that exceed the capacity of a
single subspace model [17]. HRMC accommodates numerous
subspaces by extending LRMC with a Union of Subspaces
(UoS) framework. This effectively adapts Subspace Clustering
(SC) techniques [18] to handle incomplete data. The goals
of HRMC are as follows: (a) determine the ideal UoS that
most accurately depicts the incomplete data matrix X (b)
cluster the columns of X*? in accordance with the determined
UoS; and (c) fill in the missing values within X, Cluster
knowledge would make it easier to apply LRMC to each cluster
for data completion and subspace learning; on the other hand,
missing value detection would help SC cluster the data and
find subspaces. These two goals are intertwined. The main
challenge lies in completing these objectives at the same time.

In recent years, there has been a proliferation of High-
rank Matrix Completion (HRMC) algorithms due to the
widespread adoption of the Union of Subspaces (UoS) model.
The algorithms demonstrate a wide range of approaches and
levels of performance. Among the notable techniques are nearby
methods, which use distances between partially seen sites to
construct clusters [17]. Studies also describe naive methods that
replace missing items with zeros or means before clustering
using a Subspace Clustering (SC) method [19]. As described
by [20], additional techniques have also been developed, such
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Fig. 1: Clustering accuracy for COIL20, Yale B, and ORL dataset respectively. Our architecture outperforms the next best
algorithm by a staggering 40% at any interval across all datasets.

Fig. 2: Reconstruction Images for Yale B dataset. The recon-
struction capabilities of our DeLUCA model are extraordinary.
For example, the image highlighted in green is a reconstruction
obtained from the image highlighted in red, which has 80%
of their entries missing. Compare to its original, highlighted
in blue.

as GROUSE [21], which are used in addition to techniques
that combine aspects of ridge and lasso regression. Usage
of unions as second-order algebraic structures in techniques
known as "liftings" is another novel strategy [22]. Furthermore,
the incorporation of quantum computing into HRMC represents
a breakthrough, where quantum algorithms are utilized for data
imputation to boost performance in comparison to conventional
techniques [23]. When it comes to neural networks, variational
autoencoders [24] and Long Short-Term Memory (LSTM)
networks [25] are commonly paired with one another to handle
data imputation. In addition, generative models like Denoising
Diffusion Probabilistic Models (DDPM) [26] and Generative
Adversarial Networks (GANs) [27] are being used more and
more in matrix completion tasks.

Unfortunately, there are drawbacks to each of these tech-
niques. For instance, naive approaches face challenges when
working with relatively large datasets since the mere act of
filling in missing data disrupts the fundamental Union of Sub-
spaces (UoS) structure [19]. On the other hand, neighborhood
approaches are not feasible in many situations since they need
a super-polynomial number of samples or a significant number
of observations to provide adequate overlaps [17]. Increasing
the dimensionality of an already high-dimensional space is the
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Fig. 3: LUC and related problems.

goal of lifting methods [22]. Problems like quantum noise and
computational constraints occur in quantum computing, a field
within quantum information theory [23]. Furthermore, while
many approaches produce excellent results on synthetic data,
real-world data performance presents difficulties.

In this paper, we present Latent Union Completion (LUC),
a novel and broader completion model. The basic goal is to
identify a non-linear structure that encapsulates the observed
data and may be represented as a UoS in a latent space. The
objective is to use this latent UoS (LUoS) to fill in the missing
data. Our proposal involves a deep learning architecture with
three main components: (i) an autoencoder that embeds the
data into the latent space; (ii) an auto-completion layer that
estimates the missing values in the input X$: and (iii) a self-
expressive layer that clusters the embedded data based on a UoS
model. In this manner, we can concurrently do both goals of
clustering and completing with our architecture, which we refer
to as Deep Latent Union Completion Architecture (DeLUCA).
Above all, our experiments on the COIL20 [28], Extended
Yale B, [29], and ORL [30] datasets demonstrate that it can
achieve extraordinarily high accuracy on real datasets. Figure 1
provides a summary of the findings and allows for comparison
with other cutting-edge techniques. This Figure demonstrates
how, at every given interval of the proportion of missing data
over the whole dataset, our architecture performs 40% better in
clustering accuracy than the next best approach. Furthermore
highlighting our model’s remarkable reconstruction ability is
Figure 2. To illustrate an astonishing resemblance to the genuine
(original) image, highlighted in blue, the face from the Yale B
dataset, indicated in red, was finished from the partial image
above, noted in green. The outcomes of the remaining samples
are equally striking (see Figures throughout).

Architecture Novelty. Another model that has shown suc-
cess in the related problem of Subspace Clustering (SC) serves
as the basis for our design, DeLUCA. Remember that when




data is completely observed, SC can be thought of as the
particular case of HRMC, where the objective is just to cluster
the data based on a UoS. More specifically, we modify the
DSC-net architecture [31] by introducing a unique pseudo-
completion layer made up of two partially connected layers
as a first component. The main innovation is that the missing
elements will be imputed from the normalized entries of the
observed data after the data has gone through the pseudo-
completion layer. This makes it possible for us to enter data
that is incomplete into a clustering network that would not
operate otherwise. By including this pseudo-completion layer,
our design can now smoothly handle clustering and finishing
at the same time.

II. LUOS MODEL AND DELUCA NETWORK

This section contains a detailed presentation of our LUoS
model, along with an explanation of the difficulties a deep
learning architecture faces in the event of missing data and how
we overcome them to create our DeLUCA network. Hereafter
we will use X to denote a full-data matrix of size m X n,
and X% to denote the incomplete version of X that is only
observed in the entries of @ C {1,...,m} x {1,...,n}.

HRMC assumes that the rows of X lie near the union of
K subspaces denoted by Uy, ..., Uk. Given XQ, the goals of
HRMC is (a) to infer the underlying subspaces U, ..., Uk,
(b) to cluster the columns of X according to their closest
subspace, and (c) to complete the missing values in X< LUC.
Unfortunately, many datasets do not lie near a UoS. However,
any data is more likely to lie near a non-linear structure that can
be represented as a UoS in a latent space. That is because UoSs
are the special case of this latent model where the embedding
is simply the identity map. Hence, we will assume that there
exists an embedding Z € R™*" of X where the rows of Z
lie near the union of K subspaces denoted by Vy, ..., Vk. We
make no assumptions about the number of subspaces or their
dimensions. Given Xﬂ, the goals of LUC are (a) to find the
embedding Z and infer the latent subspaces Vi, ..., Vk, (b) to
cluster the columns of Z (and by correspondence, the columns
of X% according to their closest latent subspace, and (c) to
complete the missing values in X according to the inverse
embedding and the latent UoS. To achieve these goals, we will
use a deep network architecture that is detailed below.

A. Architecture

Three major parts make up our DeLUCA network (Figure
4): (i) a self-expressive layer, (ii) an autoencoder, and (iii) a
pseudo-completion layer. The pseudo-completion layer enables
the handling of missing data differently than the traditional
imputation methods like zero-fill or mean imputation. This is
by no means a simple task, as each sample contains uneven
patterns of observed entries that disturb the data to the point
where it can no longer be fed directly into the autoencoder,
as is usually the case with full-data methods such as DSC-net
[31] (for more information, see Section II-C).

Pseudo-completion Layer. This consists of two flattened,
partially linked layers. In order to create a completed data

matrix X with placeholder imputations, these layers normalize
all the observed elements in X**. These normalized values then
replace the missing entries. In this manner, the matrix X can
be smoothly fed into our architecture’s autoencoder component.
See Section II-C for more information.

Autoencoder. The second key element of our architecture is
the autoencoder. The autoencoder performs the task of mapping
the imputed data from the pseudo-completion layer into an
embedding where the self-expressive layer can locate the latent
UoS structure which will then cluster the given data. This
autoencoder, as usual, consists of two parts. The encoder is the
first component whose goals is to capture important features and
patterns in the input data and compress the data into a reduced
dimensional space until it generates a compact representation
in the latent space. The second part being the decoder, which
returns the data to its original space, is the second part of the
autoencoder. Completing the data in accordance with the latent
UoS is its goal.

Self-expressive Layer. The self-expressive layer is our
model’s final essential element. The autoencoder contains this
layer in the center, in between the encoder and the decoder.
Its objective is to use Sparse Subspace Clustering (SSC) to
determine the UoS [32]. Sparsity in data representations is
used in SSC, a technique for exposing UoS structures in high
dimensional datasets. The method is to express each sample as
a linear combination of the remaining data, so creating a sparse
representation of each sample. Subspaces are then revealed
by clustering the data according to the coefficients of these
combinations. These three layers achieve their respective tasks
through a coupled loss function, detailed below.

B. Loss Function

The design of the loss function required careful consideration
in order to accommodate the presence of missing data, and
the disparity between the incomplete input and the complete
output. Recall that we use X 1o represent the incomplete
version of X observed on the entries indicated in 2. Here
X is the input of our network. We use Z to denote the
latent representation of X, which corresponds to the output of
the encoder and the input to the self-expressive layer, whose
weights we represent with the coefficient matrix @ € R™*™.
Notice that besides ©, the output of our network depends
on all the other parameters of the network (weights of the
pseudo-completion and autoencoder), which we denote as
®. To emphasize this dependency, we use X to denote the
output of our network. Finally, to compare the (complete)
output with the (incomplete) input of our network, we define

Xq, as the incomplete version of Xg observed on the entries
indicated in 2. With this, we are ready to present our loss
function:

1 A
L(©,®) = 5|X? - Xql}

A
+ z- ez} + xlel;
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Fig. 4: DeLUCA Network.

Coefficients and Parameter Tuning. In the first term of
the loss function, we minimize the error between the observed
input and their corresponding entries in the output. The second
term aims to express each row in Z as a linear combination of
the remaining rows of Z. These coefficients are given by ©.
The intuition is that ® will reveal the UoS structure because
larger coefficients will indicate belonging to the same subspace.
The last term aims to regularize ®, so that it produces a
stable result with minimum norm (as there could be arbitrarily
many solutions). We show that SSC generally uses an ¢;
norm for this last term, in order to favor sparse solutions.
Our choice to use the /5 norm instead was driven by recent
results showing improved performance [33]. In this work it
was also concluded that the typical constraint diag(®) = O is
not a strict requirement when the ¢5 regularizer is used. Finally,
A1 and Ao are regularization parameters. These regularization
parameters were determined by an iterative refinement approach
where parameters were tuned based on their impact on model
performance, leading to the identification of optimal values.
Our training goal is to find the parameters ® and ® that
minimize this loss. We describe our strategy to attain this goal
below.

C. Training Strategy

The self-expressive layer requires receiving the entire dataset
at once (rather than one sample at a time). This is required
because the layer must compute similarities between all samples
to learn the patterns in the observed data that will reveal the
UoS. Since we are dealing with missing data, it is not possible
to pretrain the autoencoder, and hence, we do not pretrain
our model. It also does not require initialization of the model
with a pre-processed dataset for performing subspace clustering
unlike other SC models. It is also to be noted that for training
we do not have a set epoch value for termination but rather the
termination happens when the learning rate reaches a value of
the original learning rate/10. Furthermore, for the loss function,
we determine the values of ® and ® by iterative tuning where
multiple configurations were explored, and the final values
were selected based on their performance in minimizing the
loss.

The additional challenge is that, contrary to what is fre-
quently accomplished by other approaches [34], the missing
entries cannot be naively supplied with zeros or mean values

since this type of imputation introduces bias and distorts the
true underlying low-dimensional structure [14]. In a similar
vein, we are unable to truncate or sketch (keep only a few
characteristics) due to the possibility of bias, information loss,
and decreased generalization ability caused by missing data in
every column [35].

It was decided to mask the missing entries so that their
absence would not impact the weights assigned to them by the
network. But it needed to be done cautiously as the rationale
behind it is that every neuron encodes a single complete feature.
However, every feature contains a significant number of missing
entries in the high missing data regimes that we are interested
in. Therefore, masking any neuron with missing values would
mask all the neurons, meaning that there would be no active
connections between the encoder and the input layer.

Creation of Pseudo Completion Layer. We solved the
masking problem by flattening X into a 1 x ¢ dimensional
vector, where £ = m x n. Now each node contains one entry
and all of the missing entries were masked. An additional
layer of 1 x ¢ dimension was introduced in the model before
encoder. For the earlier version of the architecture these layers
were fully connected. These layers also served the purpose
of preserving the original shape after the masking procedure.
The entries in the second layer were then reshaped from 1 x £
into its original m X n. We termed this obtained matrix as
X¢ with x§ € R™ representing the feature vectors of X°. For
activation, RELU activation function was implemented in the
pseudo-completion layer.

Refining Pseudo Completion Layer. But fully connected
layers created large requirements of computing resources. To
reduce this requirement, connections between initial layers
were modified to be partially connected layers. Now each XJQ
nodes at m intervals in the flattened layer and the additional
layer were interconnected. These partially connected layers
together were termed as the pseudo-completion layer.

At the output of the pseudo-completion layer, the data X°
is now compatible with the autoencoder. This activates the
autoencoder which then performs its function of mapping X°
into an embedding where the self-expressive layer can find
the LUoS structure that clusters the given data. Following the
clustering process, the decoder reverses the embedding with
the final layer containing X, € R™ feature vectors. This is



COIL20

ORL

—+— Zero Fill

Completion Error
Completion Error

i | — DeLUCA(our model)
MIDAS
SimpleFill
KNN
MICE
Softimpute
—— SSC_EWZF

Completion Error

Pen;'centagénof Missir;ﬂg Data -

Pe};centagewof Missir?g Data :

Pexrcentagewof Missirﬂ:g Data *

Fig. 5: Completion Errors for COIL20, Extended Yale B, and ORL Dataset.
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Fig. 6: Reconstruction results for different missing data percentages for COIL20, E-YaleB and ORL Datasets.

then resolved into an output matrix; X that comprises of
predicted values.

III. EXPERIMENTS

Comparative Baselines. The 10 methods that we used for
comparative analysis can be categorized into two types: the
first type includes methods exclusively for data completion,
while the second type encompasses methods capable of both
completion and clustering. The following are examples of
completion-only algorithms: (1) SimpleFill: This method uses
the most recent non-missing value to fill in any missing values
in a dataset. (2) K-Nearest Neighbors: This technique estimates
missing values using the similarity between data points [36].
(3) Iterative Imputer: Using a sophisticated imputation method,
each feature with missing data is modeled as a function of
other characteristics, allowing the iterative prediction of missing
values [37]. (4) SoftImpute: A penalty term is incorporated
while the rank of the finished matrix is minimized to recover
missing points [38]. (5) MIDAS: To corrupt and recover data,
this method uses denoising autoencoders [39]. The remaining
five models, which can perform both subspace clustering and
reconstruction, belong to the second group. These models,
which are covered in the related work section, include SSC-MC,
SSC-EWFZ, GSSC, EM, and MSC. Additionally, as mentioned
in Section 2, we also generated results for the zero-fill model,
where we impute the missing entries with O instead of using
our pseudo-completion layer.

COIL20. The first real dataset used in this project is COIL20.

This dataset consists of 1440 grayscale 128 x 128 images
of K = 20 objects with 72 poses each. These images were
reshaped to 32 x 32 pixels for computation feasibility. It was
observed from Figure 5 that DeLUCA performed better than
all other models in terms of completion error when plotted
against the percentage of missing data. It can also be noted
from Figure 1 that, the model performs significantly better than

all other methods in terms of clustering accuracy and that it
outperforms the next best method by more than 40%.

As seen from Figure 6, in a set of 2 random images sampled
from the COIL20 dataset the image reconstruction is performed
by DeLUCA for three levels of missing entries starting from
20% to 50% and then finally at 80%.

Extended Yale B. We then used Extended Yale B which
contains 2414 images of 38 human subjects with 64 images
per person, where all the images are manually aligned, cropped,
and then re-sized to 192 x 168 images. From this, we used
only 20 human subjects with a total of 1280 images which
were reshaped to 48 x 42 pixels and this dataset had K = 20.
Similar to COIL20, it is again observed from Figure 5 that
the completion error of DeLUCA outperforms uniformly over
all the other methods for any amount of missing data in the
dataset. Also worth noting that for this dataset, even at 80%
missing entries, the model performs at a clustering accuracy
of more than 80%.

ORL Dataset. And finally, we used the ORL Database of
Faces that contains 400 images from 40 distinct subjects. The
size of each image is 92 x 112 pixels which were then reshaped
to 32 x 32 pixels, with 256 grey levels per pixel.

Missing Data and Performance Metrics. To emulate
missing data we artificially removed entries from each dataset
uniformly at random with replacement. To measure completion
error we computed the normalized Frobenius norm of the
difference between Xg and X, ie., |[Xe — X|#/[X]. We
measured clustering accuracy as the proportion of correctly
assigned data points to their respective clusters after using the
Hungarian algorithm to find the best matching labeling.
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