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But many times data is missing!

A typical example: Netflix.

movies





4 · 1 1 5 4 2 5 3 ·
· 5 · 1 · · · 4 · 5
1 · 2 · 2 5 1 · · 4
2 · 5 4 · 1 · 2 · 4
· 5 1 · 5 · · · 1 ·
1 5 · 2 · 2 1 · · 5︸ ︷︷ ︸

people



Nobody has seen every movie.
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We want to analyze all that data.
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I We know lots about linear algebra.

I But what if data are missing?
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I There is great interest on extending usage of linear algebra to
incomplete datasets.

I That is what we are studying.
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Problem description

S? := r-dimensional subspace of Rd, r < d.
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Is this even possible?

There might be many subspaces that agree with the projections.
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Can you tell which are the good sets?
This is what we answer here: which are the good sets.
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Setup

The columns of Ω will index the given projections.

Ω =


ω1 ω2

1 0
1 1
0 1





Setup

I Gr(r,Rd) := Grassmannian manifold of r-dimensional
subspaces in Rd.

I S(S?,Ω) := Set of r-dimensional subspaces that agree
with S? on Ω.



Setup

I Gr(r,Rd) := Grassmannian manifold of r-dimensional
subspaces in Rd.

I S(S?,Ω) := Set of r-dimensional subspaces that agree
with S? on Ω.



Setup

I Gr(r,Rd) := Grassmannian manifold of r-dimensional
subspaces in Rd.

I S(S?,Ω) := Set of r-dimensional subspaces that agree
with S? on Ω.



Setup

I S? is r-dimensional.

I The projection of S? onto ≤ r canonical coordinates gives no
information about S?.

I ⇒ Assume w.l.o.g. that all projections are onto r + 1
canonical coordinates.



Setup

I S? is r-dimensional.

I The projection of S? onto ≤ r canonical coordinates gives no
information about S?.

I ⇒ Assume w.l.o.g. that all projections are onto r + 1
canonical coordinates.



Setup

I S? is r-dimensional.

I The projection of S? onto ≤ r canonical coordinates gives no
information about S?.

I ⇒ Assume w.l.o.g. that all projections are onto r + 1
canonical coordinates.



Setup

I For any matrix Ω′ formed with a subset of the columns in Ω:

Ω′ =


1 0
1 1
0 1
0 0


︸ ︷︷ ︸

n(Ω′) := #columns
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I d− r projections are necessary, so we will assume w.l.o.g.
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The Answer

Theorem (Pimentel-Alarcón, Nowak, Boston, ’14)

For almost every S?, with respect to the uniform measure over
Gr(r,Rd), S? is the only subspace in S(S?,Ω) if and only if
for every matrix Ω′ formed with a subset of the columns in Ω,

m(Ω′) ≥ n(Ω′) + r.
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Sketch of the proof

S(S?,ωi) := Set of r-dimensional subspaces matching S? on ωi.
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ai := Vector orthogonal to the ith projection.

An entry in ai is zero iff the corresponding entry in ωi is zero.
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One great thing:

I Every subspace in S(S?,ωi) is orthogonal to ai.

Cool! ⇒
I Construct

A =
[
a1 · · · aN

]
.

I Every S ∈ S(S?,Ω) must be contained in

kerAT.
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m(A′) := #nonzero rows

I We want dimkerAT = r, so A better have d− r linearly
independent columns.
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We know how to deal with A using linear algebra!

I Through some technical details:

Lemma (Pimentel-Alarcón, Nowak, Boston, ’14)

For almost every S?, the columns of A are linearly dependent
if and only if m(A′) < n(A′) + r for some matrix A′ formed
with a subset of the columns in A.
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The zero entries of Ω and A are in the same positions.
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1 0 0
0 1 0
0 0 1

 ⇐⇒ A′ =
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0 a32 0
0 0 a43
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Then

m(Ω′) ≥ n(Ω′) + r ⇐⇒ m(A′) ≥ n(A′) + r
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To wrap up:

I Every Ω′ formed with a subset of the columns in Ω,

m(Ω′) ≥ n(Ω′) + r

I Iff every A′ formed with a subset of the columns in A,

m(A′) ≥ n(A′) + r

I Iff the columns in A are linearly independent, i.e.,

dimkerAT = r

I Iff S? is the only subspace in S(S?,Ω). �
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Application
Low-Rank Matrix Completion (LRMC)

I Given a subset of entries in a rank r matrix, exactly recover all
of the missing entries.

XΩ =


1 · 3 ·
1 2 · ·
· 2 3 ·
· · · 4
· · · 4

 ⇒ X̂ =


1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4


I ∼ Identifying the subspace spanned by the columns, S?. Here

Ŝ = span


1
1
1
1
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How do we know we got the right completion (subspace)?

Known results e.g. (Candès and Recht, ’09)
I Require random observed entries.

I May not be justified.

I Require incoherence
I Sufficient, but not necessary condition.
I Generally unverifiable or unjustified in practice.

I Work with high probability (if assumptions are met).

What if these assumptions are not met? How can we validate a
completion?
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Application

Corollary (Pimentel-Alarcón, Nowak, Boston, ’14)

Let the columns of X be drawn independently according to µ,
an absolutely continuous distribution with respect to the
Lebesgue measure on S?. Suppose XΩ can be partitioned into
two sets of columns, XΩ1 and XΩ2 , such that Ω2 satisfies the
conditions of the subspace identifiability theorem.
Let Ŝ be the output of running an LRMC algorithm on XΩ1 .
Then for almost every S?, and almost surely with respect to µ,
XΩ2 fits in Ŝ if and only if Ŝ = S?.



Application

Corollary (Pimentel-Alarcón, Nowak, Boston, ’14)

Let the columns of X be drawn independently according to µ,
an absolutely continuous distribution with respect to the
Lebesgue measure on S?. Suppose XΩ can be partitioned into
two sets of columns, XΩ1 and XΩ2 , such that Ω2 satisfies the
conditions of the subspace identifiability theorem.
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Now we know that:

I It is possible to uniquely identify an r-dimensional subspace
S? from its projections onto Ω.

I If and only if every subset of n columns of Ω has at least
n+ r nonzero rows.

I Whence S? = kerAT.
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Thanks.


