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But many times data is missing!

A typical example: Netflix.

movies





4 · 1 1 5 4 2 5 3 ·
· 5 · 1 · · · 4 · 5
1 · 2 · 2 5 1 · · 4
2 · 5 4 · 1 · 2 · 4
· 5 1 · 5 · · · 1 ·
1 5 · 2 · 2 1 · · 5︸ ︷︷ ︸

people
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I But what if data are missing?
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I There is great interest on extending usage of linear algebra to
incomplete datasets.

I That is what we are studying.
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Problem description

S? := r-dimensional subspace of Rd, r < d.
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Suppose I don’t tell you S?...but I give you a set of projections of
S? onto some canonical subspaces.

Can you uniquely determine S? from this set of projections?



Problem description

Is this even possible?

There might be many subspaces that agree with the projections.
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Setup

The columns of Ω will index the given projections.

Ω =


ω1 ω2

1 0
1 1
0 1
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m(Ω′) := #nonzero rows

I d− r projections are necessary, so we will assume w.l.o.g.

n(Ω) = d− r.
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The Answer

Theorem (Pimentel-Alarcón, Nowak, Boston, ’14)

For almost every S?, with respect to the uniform measure over
Gr(r,Rd), S? is the only subspace in S(S?,Ω) if and only if
for every matrix Ω′ formed with a subset of the columns in Ω,

m(Ω′) ≥ n(Ω′) + r.
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One great thing:

I Every subspace in S(S?,ωi) is orthogonal to ai.

Cool! ⇒
I Construct

A =
[
a1 · · · aN

]
.

I Every S ∈ S(S?,Ω) must be contained in

kerAT.
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I For any matrix A′ formed with a subset of the columns in A:

A′ =


a11 0
a21 a22
0 a32
0 0


︸ ︷︷ ︸

n(A′) := #columns

m(A′) := #nonzero rows

I We want dimkerAT = r, so A better have d− r linearly
independent columns.
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We know how to deal with A using linear algebra!

I Through some technical details:

Lemma (Pimentel-Alarcón, Nowak, Boston, ’14)

For almost every S?, the columns of A are linearly dependent
if and only if m(A′) < n(A′) + r for some matrix A′ formed
with a subset of the columns in A.
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The zero entries of Ω and A are in the same positions.

Ω =


1 1 1
1 0 0
0 1 0
0 0 1

 ⇐⇒ A′ =


a11 a12 a13
a21 0 0
0 a32 0
0 0 a43



Then

m(Ω′) ≥ n(Ω′) + r ⇐⇒ m(A′) ≥ n(A′) + r
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To wrap up:

I Every Ω′ formed with a subset of the columns in Ω,

m(Ω′) ≥ n(Ω′) + r

I Iff every A′ formed with a subset of the columns in A,

m(A′) ≥ n(A′) + r

I Iff the columns in A are linearly independent, i.e.,

dimkerAT = r

I Iff S? is the only subspace in S(S?,Ω). �
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Application
Low-Rank Matrix Completion (LRMC)

I Given a subset of entries in a rank r matrix, exactly recover all
of the missing entries.

XΩ =


1 · 3 ·
1 2 · ·
· 2 3 ·
· · · 4
· · · 4

 ⇒ X̂ =


1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4


I ∼ Identifying the subspace spanned by the columns, S?. Here

Ŝ = span


1
1
1
1
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Ŝ = span


1
1
1
1
1





Application
Low-Rank Matrix Completion (LRMC)

I Given a subset of entries in a rank r matrix, exactly recover all
of the missing entries.

XΩ =


1 · 3 ·
1 2 · ·
· 2 3 ·
· · · 4
· · · 4

 ⇒ X̂ =


1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4


I ∼ Identifying the subspace spanned by the columns, S?.

Here
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I Maybe the real completion is:
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How do we know we got the right completion (subspace)?

Known results e.g. (Candès and Recht, ’09)
I Require random observed entries.

I May not be justified.

I Require incoherence
I Sufficient, but not necessary condition.
I Generally unverifiable or unjustified in practice.

I Work with high probability (if assumptions are met).

What if these assumptions are not met? How can we validate a
completion?
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Let Ŝ be the output of running an LRMC algorithm on XΩ1 .
Then for almost every S?, and almost surely with respect to µ,
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Thanks.


