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Low-Rank Matrix Completion (LRMC) aims to find the
subspace from incomplete datasets.
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Generally unverifiable or unjustified in practice.

I Then with high probability you can complete the matrix.
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Theorem (P.-A., Nowak, Boston (Allerton ’15))

If in addition X

⌦

has an extra (d� r) columns observed on

ˆ

⌦,

such that every matrix ⌦

0
formed with a subset of the columns

in

ˆ

⌦ satisfies

m(⌦

0
) � n(⌦0

) + r,

then X can be uniquely recovered from X

⌦
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I Suppose you observe the right entries.

I Try to complete the matrix using any method.

I If you find a rank-r completion, then it is the right completion.

I In lieu of coherence assumptions.

I In lieu of uniform sampling assumptions.

I With probability 1 (as opposed to with high probability).
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