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Linear Algebra is one of our favorite tools.

» Because data is often well-modeled by linear subspaces.
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» We know how to find the subspace (e.g., using SVD).
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That’s all very nice, but... often data is missing!

» Example: Vision.

g

Image: Hopkins 155 Dataset

> We still want to find subspaces.



Introduction

Low-Rank Matrix Completion (LRMC) aims to find the
subspace from incomplete datasets.




Introduction

Low-Rank Matrix Completion:



Introduction

Low-Rank Matrix Completion:

» Given a subset of entries in a rank-r matrix, exactly recover
all of the missing entries.



Introduction

Low-Rank Matrix Completion:

» Given a subset of entries in a rank-r matrix, exactly recover
all of the missing entries.

1 - 3
1 2 -
Xq = 2 3



Introduction

Low-Rank Matrix Completion:

» Given a subset of entries in a rank-r matrix, exactly recover
all of the missing entries.

1 - 3 1 2 3 4

12 - - 1 2 3 4

Xq = 2 3 - = X=1(1 2 3 4
4 1 2 3 4

4 1 2 3 4



Introduction

Low-Rank Matrix Completion:

» Given a subset of entries in a rank-r matrix, exactly recover
all of the missing entries.

1 - 3 1 2 3 4

12 - - 1 2 3 4

Xq = 2 3 - = X=1(1 2 3 4
4 1 2 3 4

4 1 2 3 4

» ~ ldentifying the subspace spanned by the columns, S*.



Introduction

Low-Rank Matrix Completion:

» Given a subset of entries in a rank-r matrix, exactly recover
all of the missing entries.

1 - 3 1 2 3 4

12 - - 1 2 3 4

Xq = 2 3 - = X=1(1 2 3 4
4 1 2 3 4

4 1 2 3 4

» ~ ldentifying the subspace spanned by the columns, S*. Here

S* = span
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When can we Low-Rank Matrix Complete?

» Existing theory (e.g. Candés and Recht, '09) essentially says:
» If entries are observed uniformly at random.
> May not be justified.
» If matrix is incoherent
» Sufficient, but not necessary condition.
> Generally or unjustified in practice.

» Then with high probability you can complete the matrix.
But what if these assumptions are not met?
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When can we Low-Rank Matrix Complete?

» What makes a matrix completable?

» What conditions must a matrix satisfy?
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The Answer

Setup
» For any matrix €’ formed with a subset of the columns in §:

O — m(€Y) := #nonzero rows
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n(2’) := #columns



The Answer

Theorem (P.-A., Nowak, Boston (Allerton '15))

For almost every X, there exist at most finitely many rank-r
completions of Xq if and only if every matrix €' formed with
a subset of the columns in 2 satisfies

m(Q) > n(Q)/r+r.
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There is a set of measure zero of bad matrices for which this
theorem does not apply.
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The Answer

if and
only if every matrix 2’ formed with a subset of the columns in €2 satisfies

m() > n(Q)/r+r

This is the answer!

Every subset of n columns of €2 has at least n/r + r nonzero rows.
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The Answer

Theorem (P.-A., Nowak, Boston (Allerton '15))

If in addition X¢ has an extra (d —r) columns observed on §2,
such that every matrix € formed with a subset of the columns
in € satisfies

m(Q) = n(Q) +r,

then X can be uniquely recovered from Xgq.
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If a matrix satisfies our sampling conditions, then you can finitely
complete it.

3

[N

1 .
1 1
Xa= |3 4
5

S o

7
Sometimes finitely completable = uniquely completable (e.g.,
rank= 1), but sometimes not.
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But just a few additional samples in a finitely completable matrix

make it uniquely completable.
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The Answer (take home message)

In essence:

r complete columns (linearly independent) uniquely define an
r-dimensional subspace.

(r 4+ 1)(d — r) incomplete columns (observed in the right
places) uniquely define an r-dimensional subspace.
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Implications (coherence)

» P.-A., Nowak, Boston (Allerton '15):

» For almost every matrix, O(max{r,logd}) uniform random
entries per column are sufficient for completion.

> Regardless of coherence!
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» Qur results tell us exactly which entries to observe.
» We can now design Adaptive LRMC Algorithms.
» Help answer an important open question:

» The Sample Complexity of Subspace Clustering with Missing
Data.
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Validation criteria:
» Suppose you observe the right entries.

» Try to complete the matrix using any method.

v

If you find a rank-r completion, then completion.

v

In lieu of assumptions.

v

In lieu of uniform sampling assumptions.

v

With probability 1 (as opposed to with high probability).
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Idea of the proof

» Each column with r 4+ 1 samples imposes one restriction:

f17f27"'7,/t\-

» The Grassmannian has r(d — r) degrees of freedom.

> If we have r(d — r) not redundant restrictions:
» We can identify S* up to finite choice.
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Idea of the proof

> only involves the variables (of S) corresponding to the
nonzero rows of

» We want all sets of n polynomials to involve at least n/r +r
variables (otherwise they will be dependent)
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Conclusions

» In essence:

Our results tell us when will a set of incomplete vectors
uniquely define an r-dimensional subspace (just as a set of r
linearly independent vectors would).

» This sheds new light on LRMC.
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Open questions

It is one thing to be theoretically able to complete a matrix; an
other one to complete it efficiently.

» P.-A., Nowak, Boston (Allerton '15):
» New sampling regimes where you can theoretically complete a
matrix.
» This may involve solving a complex system of polynomial
equations!
» This is computationally prohibitive.
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How much missing data can we handle and remain
computationally efficient?
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Open questions

Does coherence come at a price?

x10%
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Iterations

1 5 10 15 20

How much coherence can we handle and remain computationally
efficient?
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