A Characterization of Deterministic Sampling Patterns for Low-Rank Matrix Completion

Daniel L. Pimentel-Alarcón, Nigel Boston and Robert Nowak

University of Wisconsin-Madison

Allerton, 2015

Outline

- Introduction
- When can we Low-Rank Matrix Complete?
- The Answer
- Implications
- Idea of the proof
- Conclusions
- Open questions (if time allows)

Outline

Introduction

- When can we Low-Rank Matrix Complete?
- ► The Answer
- Implications
- Idea of the proof
- Conclusions

We have lots of data

We have lots of data

And we want to analyze it.

Linear Algebra is one of our favorite tools.

Linear Algebra is one of our favorite tools.

Because data is often well-modeled by linear subspaces.

[1	2	1	3	2	1	3	1	2	2]
2	4	2	6	4	2	6	2	4	4
3	6	3	9	6	3	9	3	6	6
1	2	1	3	2	1	3	1	2	2
2	4	2	6	4	2	6	2	4	4
3	6	3	9	6	3	9	3	6	$\begin{bmatrix} 2\\4\\6\\2\\4\\6\end{bmatrix}$

Linear Algebra is one of our favorite tools.

Because data is often well-modeled by linear subspaces.

▶ We know how to find the subspace (e.g., using SVD).

That's all very nice, but... often data is missing!

That's all very nice, but... often data is missing!

• Example: Vision.

Image: Hopkins 155 Dataset

That's all very nice, but... often data is missing!

• Example: Vision.

Image: Hopkins 155 Dataset

• We still want to find subspaces.

Low-Rank Matrix Completion (LRMC) aims to find the subspace from incomplete datasets.

Low-Rank Matrix Completion:

Low-Rank Matrix Completion:

 Given a subset of entries in a rank-r matrix, exactly recover all of the missing entries.

Low-Rank Matrix Completion:

 Given a subset of entries in a rank-r matrix, exactly recover all of the missing entries.

$$\mathbf{X}_{\mathbf{\Omega}} = \begin{bmatrix} 1 & \cdot & 3 & \cdot \\ 1 & 2 & \cdot & \cdot \\ \cdot & 2 & 3 & \cdot \\ \cdot & \cdot & \cdot & 4 \\ \cdot & \cdot & \cdot & 4 \end{bmatrix}$$

Low-Rank Matrix Completion:

 Given a subset of entries in a rank-r matrix, exactly recover all of the missing entries.

$$\mathbf{X}_{\mathbf{\Omega}} = \begin{bmatrix} 1 & \cdot & 3 & \cdot \\ 1 & 2 & \cdot & \cdot \\ \cdot & 2 & 3 & \cdot \\ \cdot & \cdot & \cdot & 4 \\ \cdot & \cdot & \cdot & 4 \end{bmatrix} \qquad \qquad \Rightarrow \qquad \mathbf{X} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

Low-Rank Matrix Completion:

Given a subset of entries in a rank-r matrix, exactly recover all of the missing entries.

$$\mathbf{X}_{\mathbf{\Omega}} = \begin{bmatrix} 1 & \cdot & 3 & \cdot \\ 1 & 2 & \cdot & \cdot \\ \cdot & 2 & 3 & \cdot \\ \cdot & \cdot & \cdot & 4 \\ \cdot & \cdot & \cdot & 4 \end{bmatrix} \qquad \qquad \Rightarrow \quad \mathbf{X} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

 \blacktriangleright \sim Identifying the subspace spanned by the columns, $S^{\star}.$

Low-Rank Matrix Completion:

 Given a subset of entries in a rank-r matrix, exactly recover all of the missing entries.

$$\mathbf{X}_{\mathbf{\Omega}} = \begin{bmatrix} 1 & \cdot & 3 & \cdot \\ 1 & 2 & \cdot & \cdot \\ \cdot & 2 & 3 & \cdot \\ \cdot & \cdot & \cdot & 4 \\ \cdot & \cdot & \cdot & 4 \end{bmatrix} \qquad \qquad \Rightarrow \qquad \mathbf{X} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

 \blacktriangleright \sim Identifying the subspace spanned by the columns, $S^{\star}.$ Here

$$S^{\star} = \operatorname{span} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}.$$

Outline

Introduction

When can we Low-Rank Matrix Complete?

- The Answer
- Implications
- Idea of the proof
- Conclusions

Existing theory (e.g. Candès and Recht, '09) essentially says:

Existing theory (e.g. Candès and Recht, '09) essentially says:

If entries are observed uniformly at random.

▶ Existing theory (e.g. Candès and Recht, '09) essentially says:

- If entries are observed uniformly at random.
 - May not be justified.

▶ Existing theory (e.g. Candès and Recht, '09) essentially says:

- If entries are observed uniformly at random.
 - May not be justified.
- If matrix is incoherent

► Existing theory (e.g. Candès and Recht, '09) essentially says:

- If entries are observed uniformly at random.
 - May not be justified.
- If matrix is incoherent
 - Sufficient, but not necessary condition.

▶ Existing theory (e.g. Candès and Recht, '09) essentially says:

- If entries are observed uniformly at random.
 - May not be justified.
- If matrix is incoherent
 - Sufficient, but not necessary condition.
 - Generally unverifiable or unjustified in practice.

▶ Existing theory (e.g. Candès and Recht, '09) essentially says:

- If entries are observed uniformly at random.
 - May not be justified.
- If matrix is incoherent
 - Sufficient, but not necessary condition.
 - Generally unverifiable or unjustified in practice.
- Then with high probability you can complete the matrix.

▶ Existing theory (e.g. Candès and Recht, '09) essentially says:

- If entries are observed uniformly at random.
 - May not be justified.
- If matrix is incoherent
 - Sufficient, but not necessary condition.
 - Generally unverifiable or unjustified in practice.
- Then with high probability you can complete the matrix.

But what if these assumptions are not met?

What makes a matrix completable?

- What makes a matrix completable?
- What conditions must a matrix satisfy?

Outline

Introduction

 \blacktriangleright When can we Low-Rank Matrix Complete? \checkmark

The Answer

- Implications
- Idea of the proof

Conclusions

Setup

• Ω will indicate the observed entries:

Setup

• Ω will indicate the observed entries:

$$\mathbf{X}_{\mathbf{\Omega}} = \begin{bmatrix} 1 & \cdot & 3 & \cdot \\ 1 & 2 & \cdot & \cdot \\ \cdot & 2 & 3 & \cdot \\ \cdot & \cdot & \cdot & 4 \\ \cdot & \cdot & \cdot & 4 \end{bmatrix}$$

Setup

• Ω will indicate the observed entries:

$$\mathbf{X}_{\mathbf{\Omega}} = \begin{bmatrix} 1 & \cdot & 3 & \cdot \\ 1 & 2 & \cdot & \cdot \\ \cdot & 2 & 3 & \cdot \\ \cdot & \cdot & \cdot & 4 \\ \cdot & \cdot & \cdot & 4 \end{bmatrix} \qquad \qquad \mathbf{\Omega} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Setup

• For any matrix Ω' formed with a subset of the columns in Ω :

$$\Omega' = \underbrace{\begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}}_{n(\Omega') := \# \text{columns}} \Biggr\} m(\Omega') := \# \text{nonzero rows}$$

Theorem (P.-A., Nowak, Boston (Allerton '15))

For almost every \mathbf{X} , there exist at most finitely many rank-r completions of \mathbf{X}_{Ω} if and only if every matrix Ω' formed with a subset of the columns in Ω satisfies

$$m(\mathbf{\Omega}') \geq n(\mathbf{\Omega}')/r + r.$$

For almost every X, there exist at most finitely many rank-r completions of X_{Ω} if and only if every matrix Ω' formed with a subset of the columns in Ω satisfies

 $m(\mathbf{\Omega}') \geq n(\mathbf{\Omega}')/r + r.$

For almost every X, there exist at most finitely many rank-r completions of X_{Ω} if and only if every matrix Ω' formed with a subset of the columns in Ω satisfies

 $m(\mathbf{\Omega}') \geq n(\mathbf{\Omega}')/r + r.$

There is a set of measure zero of bad matrices for which this theorem does not apply.

For almost every X, there exist at most finitely many rank-r completions of X_{Ω} if and only if every matrix Ω' formed with a subset of the columns in Ω satisfies

 $m(\mathbf{\Omega}') \geq n(\mathbf{\Omega}')/r + r.$

There is a set of measure zero of bad matrices for which this theorem does not apply.

$$\mathbf{X} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

For almost every X, there exist at most finitely many rank-r completions of X_{Ω} if and only if every matrix Ω' formed with a subset of the columns in Ω satisfies

 $m(\mathbf{\Omega}') \geq n(\mathbf{\Omega}')/r + r.$

There is a set of measure zero of bad matrices for which this theorem does not apply.

$$\mathbf{X} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad \qquad \mathbf{X}_{\mathbf{\Omega}} = \begin{bmatrix} 0 & \cdot & \cdot \\ 0 & 0 & \cdot \\ \cdot & 0 & 0 \\ \cdot & \cdot & 0 \end{bmatrix}$$

For almost every X, there exist at most finitely many rank-r completions of X_{Ω} if and only if every matrix Ω' formed with a subset of the columns in Ω satisfies

 $m(\mathbf{\Omega}') \geq n(\mathbf{\Omega}')/r + r.$

For almost every X, there exist at most finitely many rank-r completions of X_{Ω} if and only if every matrix Ω' formed with a subset of the columns in Ω satisfies

 $m(\mathbf{\Omega}') \geq n(\mathbf{\Omega}')/r + r.$

$$\mathbf{X}_{\mathbf{\Omega}} = \begin{bmatrix} 1 & 1 & 3 & \cdot \\ 1 & 2 & \cdot & 1 \\ 3 & \cdot & 5 & 4 \\ \cdot & 7 & 6 & 5 \end{bmatrix}$$

For almost every X, there exist at most finitely many rank-r completions of X_{Ω} if and only if every matrix Ω' formed with a subset of the columns in Ω satisfies

 $m(\mathbf{\Omega}') \geq n(\mathbf{\Omega}')/r + r.$

$$\mathbf{X}_{\Omega} = \begin{bmatrix} 1 & 1 & 3 & \cdot \\ 1 & 2 & \cdot & 1 \\ 3 & \cdot & 5 & 4 \\ \cdot & 7 & 6 & 5 \end{bmatrix} \qquad \qquad \Rightarrow \begin{cases} \mathbf{X} = \begin{bmatrix} 1 & 1 & 3 & 2 \\ 1 & 2 & 1 & 1 \\ 3 & 5 & 5 & 4 \\ 4 & 7 & 6 & 5 \end{bmatrix} \\ \mathbf{X} = \begin{bmatrix} 1 & 1 & 3 & 10 \\ 1 & 2 & \frac{21}{13} & 1 \\ \frac{3 & \frac{53}{9} & 5 & 4}{\frac{68}{19} & 7 & 6 & 5} \end{bmatrix}$$

For almost every X, there exist at most finitely many rank-r completions of X_Ω if and only if every matrix Ω' formed with a subset of the columns in Ω satisfies

 $m(\mathbf{\Omega'}) \geq n(\mathbf{\Omega'})/r + r.$

For almost every X, there exist at most finitely many rank-r completions of X_{Ω} if and only if every matrix Ω' formed with a subset of the columns in Ω satisfies

 $m(\mathbf{\Omega}') \geq n(\mathbf{\Omega}')/r + r.$

This is the answer!

For almost every X, there exist at most finitely many rank-r completions of X_{Ω} if and only if every matrix Ω' formed with a subset of the columns in Ω satisfies

 $m(\mathbf{\Omega'}) \geq n(\mathbf{\Omega'})/r + r.$

This is the answer!

Every subset of n columns of Ω has at least n/r + r nonzero rows.

For almost every X, there exist at most finitely many rank-r completions of X_{Ω} if and only if every matrix Ω' formed with a subset of the columns in Ω satisfies

```
m(\mathbf{\Omega'}) \geq n(\mathbf{\Omega'})/r + r.
```

This is the answer!

Every subset of n columns of Ω has at least n/r + r nonzero rows.

$$\mathbf{\Omega} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

For almost every X, there exist at most finitely many rank-r completions of X_{Ω} if and only if every matrix Ω' formed with a subset of the columns in Ω satisfies

```
m(\mathbf{\Omega}') \geq n(\mathbf{\Omega}')/r + r.
```

This is the answer!

Every subset of n columns of Ω has at least n/r + r nonzero rows.

$$\mathbf{\Omega} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \Rightarrow \ \mathsf{Check:} \ \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

The answer

Now we know when there are at most finitely many completions.

► Then what?

Theorem (P.-A., Nowak, Boston (Allerton '15))

If in addition X_{Ω} has an extra (d-r) columns observed on $\hat{\Omega}$, such that every matrix Ω' formed with a subset of the columns in $\hat{\Omega}$ satisfies

$$m(\mathbf{\Omega}') \geq n(\mathbf{\Omega}') + r,$$

then X can be uniquely recovered from X_{Ω} .

If a matrix does not satisfy our sampling conditions, then you cannot complete it.

If a matrix does not satisfy our sampling conditions, then you cannot complete it.

$$\mathbf{X}_{\Omega} = \begin{bmatrix} 1 & \cdot & 3 & \cdot \\ 1 & 2 & \cdot & \cdot \\ \cdot & 2 & 3 & \cdot \\ \cdot & \cdot & \cdot & 4 \\ \cdot & \cdot & \cdot & 4 \end{bmatrix}$$

If a matrix satisfies our sampling conditions, then you can finitely complete it.

If a matrix satisfies our sampling conditions, then you can finitely complete it.

$$\mathbf{X}_{\mathbf{\Omega}} = \begin{bmatrix} 1 & 1 & 3 & \cdot \\ 1 & 2 & \cdot & 1 \\ 3 & \cdot & 5 & 4 \\ \cdot & 7 & 6 & 5 \end{bmatrix}$$

If a matrix satisfies our sampling conditions, then you can finitely complete it.

$$\mathbf{X}_{\mathbf{\Omega}} = \begin{bmatrix} 1 & 1 & 3 & \cdot \\ 1 & 2 & \cdot & 1 \\ 3 & \cdot & 5 & 4 \\ \cdot & 7 & 6 & 5 \end{bmatrix}$$

Sometimes finitely completable = uniquely completable (e.g., rank=1), but sometimes not.

But just a few additional samples in a finitely completable matrix make it uniquely completable.

But just a few additional samples in a finitely completable matrix make it uniquely completable.

$$\mathbf{X}_{\mathbf{\Omega}} = \begin{bmatrix} 1 & 1 & 3 & \cdot & -1 & 1 \\ 1 & 2 & \cdot & 1 & \cdot & -1 \\ 3 & \cdot & 5 & 4 & 3 & \cdot \\ \cdot & 7 & 6 & 5 & 5 & -2 \end{bmatrix}$$

The Answer (take home message)

In essence:

r complete columns (linearly independent) uniquely define an r-dimensional subspace.

The Answer (take home message)

In essence:

r **complete** columns (linearly independent) uniquely define an r-dimensional subspace.

(r+1)(d-r) incomplete columns (observed in the right places) uniquely define an $r\mbox{-dimensional subspace}.$

Outline

- Introduction
- \blacktriangleright When can we Low-Rank Matrix Complete? \checkmark
- ► The Answer ✓

- Idea of the proof
- Conclusions

Implications (coherence)

- P.-A., Nowak, Boston (Allerton '15):
 - ► For almost every matrix, O(max{r, log d}) uniform random entries per column are sufficient for completion.

Implications (coherence)

- P.-A., Nowak, Boston (Allerton '15):
 - ► For almost every matrix, O(max{r, log d}) uniform random entries per column are sufficient for completion.
- Regardless of coherence!

• Our results tell us exactly which entries to observe.

- Our results tell us exactly which entries to observe.
 - We can now design Adaptive LRMC Algorithms.

- Our results tell us exactly which entries to observe.
 - We can now design Adaptive LRMC Algorithms.
- Help answer an important open question:

- Our results tell us exactly which entries to observe.
 - We can now design Adaptive LRMC Algorithms.
- Help answer an important open question:
 - The Sample Complexity of Subspace Clustering with Missing Data.

Validation criteria:

Suppose you observe the right entries.

- Suppose you observe the right entries.
- Try to complete the matrix using any method.

- Suppose you observe the right entries.
- Try to complete the matrix using any method.
- ▶ If you find a rank-*r* completion, then it is the right completion.

- Suppose you observe the right entries.
- Try to complete the matrix using any method.
- ▶ If you find a rank-*r* completion, then it is the right completion.
- In lieu of coherence assumptions.

- Suppose you observe the right entries.
- Try to complete the matrix using any method.
- ▶ If you find a rank-*r* completion, then it is the right completion.
- ► In lieu of coherence assumptions.
- ► In lieu of uniform sampling assumptions.

- Suppose you observe the right entries.
- Try to complete the matrix using any method.
- ▶ If you find a rank-*r* completion, then it is the right completion.
- ► In lieu of coherence assumptions.
- In lieu of uniform sampling assumptions.
- With probability 1 (as opposed to *with high probability*).

Outline

- Introduction
- \blacktriangleright When can we Low-Rank Matrix Complete? \checkmark
- ► The Answer ✓
- Implications
- Idea of the proof
- Conclusions

A column with r + 1 samples imposes one restriction on what the subspace may be.

A column with r + 1 samples imposes one restriction on what the subspace may be.

A column with r + 1 samples imposes one restriction on what the subspace may be.

A column with r + 1 samples imposes one restriction on what the subspace may be.

• A subspace S fits $\mathbf{x}_{\boldsymbol{\omega}_1} \iff f_1(S) = 0$.

A column with r + 1 samples imposes one restriction on what the subspace may be.

• A subspace S fits $\mathbf{x}_{\boldsymbol{\omega}_1} \iff f_1(S) = 0$.

This reduces one degree of freedom in the Grassmannian.

An other column with r + 1 samples imposes an other restriction.

$$\mathbf{X}_{\boldsymbol{\Omega}} = \begin{bmatrix} \mathbf{x}_{\boldsymbol{\omega}_2} \\ 2 \\ 2 \end{bmatrix}$$

An other column with r + 1 samples imposes an other restriction.

An other column with r + 1 samples imposes an other restriction.

• A subspace S fits $\mathbf{x}_{\boldsymbol{\omega}_2} \iff f_2(S) = 0$.

$$\mathbf{X}_{\boldsymbol{\Omega}} \hspace{0.1 cm} = \hspace{0.1 cm} \begin{bmatrix} \mathbf{x}_{\boldsymbol{\omega}_{1}} & \mathbf{x}_{\boldsymbol{\omega}_{2}} \\ 1 & \cdot \\ 1 & 2 \\ \cdot & 2 \end{bmatrix}$$

 $f_1, f_2, \ldots, f_N.$

 $f_1, f_2, \ldots, f_N.$

• The Grassmannian has r(d-r) degrees of freedom.

 $f_1, f_2, \ldots, f_N.$

- The Grassmannian has r(d-r) degrees of freedom.
- If we have r(d-r) not redundant restrictions:

 $f_1, f_2, \ldots, f_N.$

- The Grassmannian has r(d-r) degrees of freedom.
- If we have r(d-r) not redundant restrictions:
 - We can identify S^{\star} up to finite choice.

f_i(S) only involves the variables (of *S*) corresponding to the nonzero rows of *ω_i*.

- *f_i(S)* only involves the variables (of S) corresponding to the nonzero rows of ω_i.
- ► We want all sets of *n* polynomials to involve at least *n*/*r* + *r* variables (otherwise they will be dependent)

Outline

- Introduction
- \blacktriangleright When can we Low-Rank Matrix Complete? \checkmark
- ► The Answer ✓
- Implications
- Idea of the proof
- Conclusions

Conclusions

► In essence:

Conclusions

In essence:

Our results tell us when will a set of incomplete vectors uniquely define an r-dimensional subspace (just as a set of rlinearly independent complete vectors would).

Conclusions

In essence:

Our results tell us when will a set of incomplete vectors uniquely define an r-dimensional subspace (just as a set of r linearly independent complete vectors would).

This sheds new light on LRMC.

Thanks.

Outline

- Introduction \checkmark
- ▶ When can we Low-Rank Matrix Complete? ✓
- ► The Answer ✓
- Implications
- ► Idea of the proof ✓
- Conclusions
- Open questions

It is one thing to be theoretically able to complete a matrix; an other one to complete it efficiently.

▶ P.-A., Nowak, Boston (Allerton '15):

- P.-A., Nowak, Boston (Allerton '15):
 - New sampling regimes where you can theoretically complete a matrix.

- P.-A., Nowak, Boston (Allerton '15):
 - New sampling regimes where you can theoretically complete a matrix.
 - This may involve solving a complex system of polynomial equations!

- P.-A., Nowak, Boston (Allerton '15):
 - New sampling regimes where you can theoretically complete a matrix.
 - This may involve solving a complex system of polynomial equations!
 - This is computationally prohibitive.

Does missingness come at a price?

Does missingness come at a price?

Does missingness come at a price?

How much missing data can we handle and remain computationally efficient?

Can practical algorithms complete coherent matrices?

Can practical algorithms complete coherent matrices?

Does coherence come at a price?

Does coherence come at a price?

Does coherence come at a price?

How much coherence can we handle and remain computationally efficient?

Thanks again!

Thanks again! (this time I'm really done)