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In many Applications we want to Learn Subspaces

X =


1 4 1 3 3 1 2 1 2 1
2 4 2 6 3 2 2 2 4 1
3 4 3 9 3 3 2 3 6 1
1 8 1 3 6 1 4 1 2 2
2 8 2 6 6 2 4 2 4 2
3 8 3 9 6 3 4 3 6 2
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We need to Learn Subspaces by Pieces

X =


1 4 1 3 3 1 2 1 2 1
2 4 2 6 3 2 2 2 4 1
3 4 3 9 3 3 2 3 6 1
1 8 1 3 6 1 4 1 2 2
2 8 2 6 6 2 4 2 4 2
3 8 3 9 6 3 4 3 6 2

 XΩ =


1 · · 3 · 3 · 1 2 ·
2 · 2 · · 6 · · 4 ·
· · 3 · · 9 · 3 6 ·
1 · 1 3 6 · 4 1 2 2
· 8 · · 6 · 4 · · ·
· 8 · · · · 4 · · 2





Learning Subspaces by Pieces

A column with r + 1 observations imposes one restriction on what
S? may be.

XΩ =


xω1

·
1
1



I A subspace S agrees with xω1 ⇐⇒ f1(S) = 0︸ ︷︷ ︸
degree-r polynomial

.



Learning Subspaces by Pieces

More precisely:

I Take a basis of S:

S = span

 U

︸ ︷︷ ︸
r


 d.

I Then xωi ∈ S is equivalent to:

r + 1


xωi

 =

Uωi

θi.



Learning Subspaces by Pieces

I We can split this as:

r


1
{
x∆i

x∇i

 =

 U∆i

U∇i

θi.
I We can use the top block to solve for θi:

θi = U−1∆i
x∆i .

I Plug this in the last row:

x∇i = U∇iU
−1
∆i
x∆i .

I Or equivalently

x∇i −U∇iU
−1
∆i
x∆i︸ ︷︷ ︸

fi(Uωi |xωi )

= 0.



Learning Subspaces by Pieces

An other column with r + 1 samples imposes an other restriction.

XΩ =


xω2

2
2
·



I A subspace S agrees with xω2 ⇐⇒ f2(Uω2 |xω2) = 0.



Learning Subspaces by Pieces

Each column with r + 1 samples imposes one restriction.

XΩ =


xω1 xω2

· 2
1 2
1 ·



I A subspace S agrees with XΩ ⇐⇒
{

f1(Uω1 |xω1) = 0
f2(Uω2 |xω2) = 0

.



Learning Subspaces by Pieces

I We thus obtain a set of generic polynomials:

f1(Uω1), f2(Uω2), . . . , fN (UωN ).

I Polynomial fi only involves the variables indicated in ωi.
I Construct Ω = [ω1 ω2 · · · ωN ].

I Each column of Ω corresponds to one polynomial.
I Its nonzero rows indicate the variables involved.



Learning Subspaces by Pieces

I Polynomials are a algebraically independent iff

n(Ω′)︸ ︷︷ ︸
equations

≤ r(m(Ω′)− r)︸ ︷︷ ︸
unknowns

∀ Ω′ ⊂ Ω.

After this, deep algebraic geometry results do the heavy lifting:

⇔ Polynomials are a regular sequence.

⇔ Polynomials define a zero-dimensional variety.

⇔ At most finitely many solutions (subspaces) will agree with
XΩ.



Learning Subspaces by Pieces

Theorem (P.-A., Boston, Nowak)

For almost every X, at most finitely many r-dimensional
subspaces can agree with XΩ if and only if every matrix Ω′

formed with a subset of the columns in Ω satisfies

m(Ω′) ≥ n(Ω′)/r + r.



Learning Subspaces by Pieces

Theorem (P.-A., Boston, Nowak)

For almost every X, at most finitely many r-dimensional
subspaces can agree with XΩ if and only if every matrix Ω′

formed with a subset of the columns in Ω satisfies

m(Ω′) ≥ n(Ω′)/r + r.



Some Pieces are Better than Others

If we observe blocks, then polynomials become linear!



Some Pieces are Better than Others

I We are given a bunch of pieces of the subspace.

I We want to reconstruct the whole subspace.



Theorem tells us...

I Which pieces to observe.

I How to reconstruct the subspace.



I Now we know which pieces
we need.

I And how to reconstruct S?

from its pieces.

I OK, cool, that’s all very
nice, but...



What is this good for?

1 Background Segmentation
I If time allows

2 Clustering
3 Missing Data



Background Segmentation



Background Segmentation

SVD( (
Outliers!
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Background Segmentation

Our Approach State of the Art



How am I on time?



Clustering



Clustering



Clustering



Missing Data



Thanks.


