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Subspaces in Big Data



Subspaces in Big Data(incomplete)



Recommender Systems

Textbook Example
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We want to find this Subspace!

…

Columns lie in 
a subspace!

Problem is: data is incomplete!



Chicken & Egg Problem

If I knew the subspace I could find the 
missing values

If I knew the 
missing valuesI could find the subspace
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[9] F. Király, L. Theran and R. Tomioka, The algebraic combinatorial approach
for low-rank matrix completion, Journal of Machine Learning Research, 2015.

[10] E. Chunikhina, R. Raich and T. Nguyen, Performance analysis for ma-
trix completion via iterative hard-thresholded SVD, IEEE Statistical Signal
Processing Workshop, 2014.

[11] J. Cai, E. Candès and and Z. Shen, A singular value thresholding algorithm
for matrix completion, SIAM Journal on Optimization, 2010.

[12] R. Keshavan, A. Montanari and S. Oh, Matrix completion from a few en-
tries, IEEE Transactions on Information Theory, 2010.

[13] S. Ma, D. Goldfarb, L. Chen, Fixed point and Bregman iterative methods
for matrix rank minimization, Mathematical Programming, 2011.

[14] L. Balzano, R. Nowak, and B. Recht, Online identification and tracking
of subspaces from highly incomplete information, Allerton Conference on
Communication, Control and Computing, 2010.

[15] P. Jain, P. Netrapalli and S. Sanghavi, Low-rank matrix completion using
alternating minimization, ACM Symposium on Theory Of Computing, 2013.

[16] Z. Wen W. Yin and Y. Zhang, Solving a Low-Rank Factorization Model for
Matrix Completion by a Non-linear Successive Over-Relaxation Algorithm,
Mathematical Programming Computation, 2012.



Recommender Systems
- Non-uniform Sampling!
- Coherent Subspace?



Rigidity and Graph Inference
- Non-uniform Sampling!
- Coherent Subspace!



1

2

3

4 5

6

7

8

1
1

2 3 4 5 6 7 8

2
3
4
5
6
7
8

Rigidity and Graph Inference
- Non-uniform Sampling!
- Coherent Subspace!



1

2

3

4 5

6

7

8

1
1

2 3 4 5 6 7 8

2
3
4
5
6
7
8

Rigidity and Graph Inference
- Non-uniform Sampling!
- Coherent Subspace!



1

2

3

4 5

6

7

8

1
1

2 3 4 5 6 7 8

2
3
4
5
6
7
8

Rigidity and Graph Inference
- Non-uniform Sampling!
- Coherent Subspace!



1

2

3

4 5

6

7

8

1
1

2 3 4 5 6 7 8

2
3
4
5
6
7
8

Rigidity and Graph Inference
- Non-uniform Sampling!
- Coherent Subspace!



1

2

3

4 5

6

7

8

1
1

2 3 4 5 6 7 8

2
3
4
5
6
7
8

Rigidity and Graph Inference
- Non-uniform Sampling!
- Coherent Subspace!



1

2

3

4 5

6

7

8

1
1

2 3 4 5 6 7 8

2
3
4
5
6
7
8

Columns in 
Subspace!

Rigidity and Graph Inference
- Non-uniform Sampling!
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Given: incomplete data matrix Can we find its subspace?

In general

To answer this:
Totally different way to think about the problem

• Incoherence 
• Uniform 
• With high probability  
• Optimization

• Arbitrary 
• Deterministic 
• With probability 1 
• Algebraic/Geometric
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1-dimensional subspace, 2 incomplete data points
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Each column imposes1 restriction 
on what the subspace may be

New restriction may be redundant!
Depends on which entries we observe!

A flavor of our ideas



Our main result
[10] Pimentel, Boston, Nowak, 2016

Determines Exactly: 
Which entries you need to observe 

to find a subspace
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More formally

S?
= r-dimensional subspace of Rd

(in general position).

Columns of X lie in S?
(generically).

? ?

? ?

?
?

?
?

GOAL: Recover S?
.



Observed in the right entries
What do I mean?

Let X⌧ be a matrix formed with d� r columns of X.

We say X⌧ is observed in the right entries if every subset

of n columns of X⌧ has observations on at least n+ r rows.



Observed in the right entries
What do I mean?

Good Bad

Let X⌧ be a matrix formed with d� r columns of X.

We say X⌧ is observed in the right entries if every subset

of n columns of X⌧ has observations on at least n+ r rows.

X⌧ = X⌧ =



Our Main Result

Suppose X contains r + 1 disjoint matrices {X⌧}r+1
⌧=1

observed in the right entries. Then S?
is the only

r-dimensional subspace that agrees with X.

[10] Pimentel, Boston, Nowak, 2016



Our Main Result

Suppose X contains r + 1 disjoint matrices {X⌧}r+1
⌧=1

observed in the right entries. Then S?
is the only

r-dimensional subspace that agrees with X.
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Our main result in a nutshell

We can find the subspace 
if we observe the right entries

[10] Pimentel, Boston, Nowak, 2016
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1 restriction on what the subspace may be

Degree-r polynomial
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Take a basis of an arbitrary subspace

Ui

xi = Ui ✓i

Ui

This subspace agrees with         if and only if
xi

Main idea of the proof



Learning Subspaces by Pieces

I We can split this as:
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8
<

:

1
�
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x�i
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775 =
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U�i

Uri

3

775✓

i

.

I We can use the top block to solve for ✓
i

:

✓

i

= U�1
�i

x�i .

I Plug this in the last row:

xri = UriU
�1
�i

x�i .

I Or equivalently

xri �UriU
�1
�i

x�i| {z }
fi(U!i |x!i )

= 0.

fi(Ui|xi)

Main idea of the proof
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•Each of column produces one polynomial

f1(U1|x1), f2(U2|x2), . . . , fN (UN |xN )

X =

…

•The observed rows indicate the variables involved

Ui

•If data is observed in the right entries, all variables 
will be pined down
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Main idea of the proof



•If data is observed in the right entries 
- Polynomials are algebraically independent 

•After this, use cool Algebraic Geometry tricks: 
- Polynomials are a regular sequence 
- Polynomials define a zero-dimensional variety 
- At most finitely many solutions 
- Unique solution (with a bit more work) 

Main idea of the proof
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What is
this good

for?

OMG, OMG,
OMG!! Say
something!

[3] Robust PCA (2017) 
[7] Unions of Subspaces (2016) 
[8] A Converse to MC (2016) 
[9] Sampling Regimes (2016) 
[10] Coherence (2016) 
[10] Computational Complexity (2016) 
[11] Adaptive Sampling (2015) 
[12] Lower Bound (2015) 
[13] Validation Criteria (2015)



Adaptive Sampling
If we can choose, let’s choose the right entries!

[11] Pimentel et. al, 2015



Drug Discovery
Adaptive Sampling



Drug Discovery

Proteins

D
ru

gs

Adaptive Sampling



Drug Discovery

Proteins

D
ru

gs

Adaptive Sampling



Drug Discovery

Proteins

D
ru

gs

Adaptive Sampling



Drug Discovery

Proteins

D
ru

gs

Adaptive Sampling



Drug Discovery

Proteins

D
ru

gs

Adaptive Sampling



Drug Discovery

Proteins

D
ru

gs

Adaptive Sampling



Drug Discovery

Proteins

D
ru

gs

Adaptive Sampling



Drug Discovery

Proteins

D
ru

gs

Adaptive Sampling



Drug Discovery

Proteins

D
ru

gs

Adaptive Sampling



Drug Discovery

Proteins

D
ru

gs

Proteins

D
ru

gs
Adaptive Sampling



Drug Discovery

Proteins

D
ru

gs

Proteins

D
ru

gs
Adaptive Sampling



Drug Discovery Columns in 
Subspace!

Proteins

D
ru

gs

Proteins

D
ru

gs
Adaptive Sampling



Validation Criteria

Any Algorithm!

Is this the right 
Subspace?

If data was observed 
in the right entries, YES.

• Regardless of coherence 
• Arbitrary Sampling 
• With probability 1

[13] Pimentel et. al, 2015
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OK, OK. I’ll tell you about ONE more application: 

Robust PCA
In a completely different way
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LRMC RPCA
LR Matrix LR Matrix

Few 
Gross 
Errors

Know Locations 
Don’t know values

Don’t know Locations 
Know all values

Common goal: find the subspace

(Low-Rank Matrix Completion) (Robust Principal Component Analysis)

Tons of 
Missing 
Entries
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Using our Theory
Totally different way to think about the problem
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If pieces are observed in the right places, 
we can find the subspace

It gets better: 
For these sorts of pieces, 
polynomials become linear.

efficiently

Use incomplete-data tricks
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Theory matches Practice
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