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Columns lie in
a subspace!

We want to find this Subspace!

Problem is: data is incomplete!



Chicken & Egg Problem

N | could find the

missing values

1T | knew the

\_/ missing values

It | knew the subspace

| could find the subspace
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- Non-uniform Sampling!
- Coherent Subspace?
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Rigidity and Graph Inference

- Non-uniform Sampling!
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Rigidity and Graph Inference
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To answer this:
Totally different way to think about the problem
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Each column imposes 7 restriction

S on what the subspace may be
_ :1:'2_

New restriction may be redundant!

Depends on which entries we observe!

A flavor of our Ideas

1-dimensional subspace, 2 incomplete data points



Determines Exactly:
Which entries you need to observe
to find a subspace

Our main result

[10] Pimentel, Boston, Nowak, 2016
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S* = r-dimensional subspace of R? (in general position).

@)
DO O = N

Columns of X lie in S* (generically).
GOAL: Recover S™.

More formally



Let X, be a matrix formed with d — r columns of X.
We say X is observed in the right entries it every subset
of n columns of X has observations on at least n + r rows.
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Let X be a matrix formed with d — r columns of X.
We say X, is observed in the right entries if every subset
of n columns of X, has observations on at least n + r rows.

O
H N
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Good Bad

Observed in the right entries

What do | mean?




Suppose X contains r + 1 disjoint matrices {XT}7”rl

observed in the right entries. Then S™ is the only
r-dimensional subspace that agrees with X.

Our Main Result

[10] Pimentel, Boston, Nowak, 2016




Suppose X contains r + 1 disjoint matrices {XT}"”+1

observed in the right entries. Then S* is the only
r-dimensional subspace that agrees with X.
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Our Main Result

[10] Pimentel, Boston, Nowak, 2016




We can find the subspace

If we observe the right entries

Our main result in a nutshell

[10] Pimentel, Boston, Nowak, 2016
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Each column with r+7 entries imposes
1 restriction on what the subspace may be

Main idea of the proof



Each column with r+7 entries imposes
7@strictio@on what the subspace may be

Y
Degree-r polynomial
X
X = |
L

Main idea of the proof



Take a basis of an arbitrary subspace

This subspace agrees with X,; if and only if

X3

U, | 0,

Main idea of the proof
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We can split this as:

?“{ LA, _ UAq; 0.
1 { _CIZVZ._ i Uvi i

We can use the top block to solve for 0;:

0; = Uzlz_mAi.
Plug this in the last row:
Ty, = UViUZ;wA?;-
Or equivalently

ry, — UviUzl.ZBAi = 0.

o \ fi(6i|$i)
Main idea of the proof
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e |f data is observed in the right entries
- Polynomials are algebraically independent

e After this, use cool Algebraic Geometry tricks:
- Polynomials are a regular sequence
- Polynomials define a zero-dimensional variety
- At most finitely many solutions
- Unique solution (with a bit more work)

Main idea of the proof



d

IS gOO
for?

What Is
th




OMG, OMQG,
OMG!! Say
something!

What is
this good



OMG, OMQG,
OMG!! Say
something!

What is
this good

(3] Robust PCA (2017)

7] Unions of Subspaces (2016)
(8] A Converse to MC (2016)

9] Sampling Regimes (2016)
[10] Coherence (2016)

[10] Computational Complexity (2016)
[11] Adaptive Sampling (2015)
[12] Lower Bound (2015)
[13] Validation Criteria (2015)




Adaptive Sampling

It we can choose, let’s choose the right entries!
[11] Pimentel et. al, 2015
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s this the right
Subspace”?

If data was observed
in the right entries, YES.

e Regardless of coherence
e Arbitrary Sampling
o \With probabillity 1



WOW"AIVIAZING

RLEASE" TELL
£ MEMORE




WOW, AMAZING

2R T

AN &

RLEASE TELL
;‘*?‘-ME NIORE

OK, OK. I'll tell you about ONE more application:

Robust PCA

In a completely different way
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(Low-Rank Matrix Completion) (Robust Principal Component Analysis)
LR Matrix LR Matrix
Tons of Few
Missing (Gross
Entries Errors

M Know Locations
] Don't know values




(Low Ian|k:|5c’;1!>>4‘3ogn%enon (Robust Plri:niipl)il) Cg;p)éwt Analysis)
LR Matrix LR Matrix
Tons of Few
Missing (Gross
Entries Errors
M Know Locations ] Don’t know Locations
] Don’t know values M Know all values



(Low Ianlk:l\iab)élogn%etlon (Robust Plri:niipl)il) Cg;p)éwt Analysis)
LR Matrix LR Matrix
Tons of Few
Missing (Gross
Entries Errors
M Know Locations []Don’t know Locations
] Don’t know values M Know all values

Common goal: find the subspace
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Using our Theory

Totally different way to think about the problem
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Use iIncomplete-data tricks
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u — It gets better:
| For these sorts of pieces,

| polynomials become linear.
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It pieces are observed in the right places,
we can find the subspace efficiently
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e mA = A

INn many cases, similar results
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RPCA-ALM (Lin et. al, 2011-2016)
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[3] Pimentel et. al (2017)
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union of subspaces!
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Information-theoretic requirements
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State-of-the-art A\gomthms

7] Pimentel et. al, 2016



Algorithm 1: Group-Sparse Subspace Clustering

Input: XQ, K,r, A
Initialize U € Rdxxr (e.g., using SSC-EWZF).

repeat N.K

V= argmmnn(x V) + 2D lIviklla.

7.k=1

U= argmin ||Q(X—UV)||1

U : ||[Ul[p=1

until convergence;
Output: U, V.

State-of-the-art A\gomthms

7] Pimentel et. al, 2016
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