A Simpler Approach to Low-Rank Tensor Canonical Polyadic Decomposition

Daniel L. Pimentel-Alarcón UNIVERSITY of WISCONSIN-MADISON

Allerton 2016

Canonical Polyadic Decomposition Low-Rank: $R \leq D_2$

Existing Methods

- Alternating Minimization
- Simultaneous Diagonalization
- Generalized Eigenvalue Decomposition
- Line Search

This Talk

Simple Approach - Elemental Linear Algebra

Key Insight

Key Insight

Key Observation

Coefficients of different slices keep a tight relation!

Key Observation

Coefficients of different slices keep a tight relation!

Key Observation

Coefficients of different slices keep a tight relation!

Find Basis and Coefficients

1. Take *any* basis. (In this example, R=3)

1. Take *any* basis.

1. Take *any* basis.

2. Take coefficients of R columns in two slices

2. Take coefficients of R columns in two slices

$$\widetilde{\mathbf{U}}^{1} = R \text{ l.i. columns in } \mathbf{X}.$$

$$\Theta^{1}, \Theta^{2} = \text{coeffs of two slices w.r.t. } \widetilde{\mathbf{U}}^{1}.$$

$$\Gamma = \text{eigenvectors of } \Theta^{1}(\Theta^{2})^{-1}.$$

$$\mathbf{U}^{1} = \widetilde{\mathbf{U}}^{1}\Gamma.$$

Summary

At this point we know the basis

Now we just need to get the coefficients

Take one slice in each dimension

Take one slice in each dimension

And we are all set!

Take-home message:

We can obtain the CPD of low-rank tensors in closed form

$$\mathfrak{X} = \sum_{r=1}^{R} \bigotimes_{k=1}^{K} \mathbf{u}^{kr} + \mathfrak{W},$$

$$\mathfrak{X} = \sum_{r=1}^{R} \bigotimes_{k=1}^{K} \mathbf{u}^{kr} + \mathfrak{W},$$

Our NOISELESS strategy:

$$\mathfrak{X} \;=\; \sum_{r=1}^{R} \; \bigotimes_{k=1}^{K} \mathbf{u}^{kr} + \mathfrak{W},$$

Our NOISELESS strategy: $\mathbf{U}^1 = \widetilde{\mathbf{U}}^1 \boldsymbol{\Gamma}$

$$\mathfrak{X} = \sum_{r=1}^{R} \bigotimes_{k=1}^{K} \mathbf{u}^{kr} + \mathfrak{W},$$

Our NOISELESS strategy: $\mathbf{U}^1 = \underbrace{\widetilde{\mathbf{U}}^1 \Gamma}_{Can \text{ find with SVD}}$

$$\mathfrak{X} = \sum_{r=1}^{R} \bigotimes_{k=1}^{K} \mathbf{u}^{kr} + \mathfrak{W},$$

Our NOISELESS strategy: $\mathbf{U}^1 = \overbrace{\mathbf{U}^1 \mathbf{\Gamma}}^1$ Can find with SVD

Experiments

Experiments

Experiments

Thank you.