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Is this even possible?

I There might be many subspaces that agree with the
projections.
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The columns of Ω will index the given projections.

Ω =


ω1 ω2

1 0
1 1
0 1
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Gr(r,Rd), S? is the only subspace in S(S?,Ω) if and only if
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Application
Low-Rank Matrix Completion (LRMC)

I Given a subset of entries in a rank r matrix, exactly recover all
of the missing entries.
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Ŝ = span


1
1
1
1
1





Application
Low-Rank Matrix Completion (LRMC)

I Given a subset of entries in a rank r matrix, exactly recover all
of the missing entries.

XΩ =


1 · 3 ·
1 2 · ·
· 2 3 ·
· · · 4
· · · 4

 ⇒ X̂ =


1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4


I ∼ Identifying the subspace spanned by the columns, S?. Here
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Known results e.g. (Candès and Recht, ’09)
I Require random observed entries.

I May not be justified.

I Require incoherence
I Sufficient, but not necessary condition.
I Generally unverifiable or unjustified in practice.

I Work with high probability (if assumptions are met).

What if these assumptions are not met? How can we validate a
completion?
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Thanks.


