On the Difficulties of Subspace Clustering with Missing Data

Daniel L. Pimentel-Alarcón

 1^{st} Annual Workshop on Data Sciences, April 17^{th} , 2015

Joint work with Nigel Boston and Robert Nowak

Outline

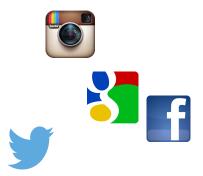
Introduction

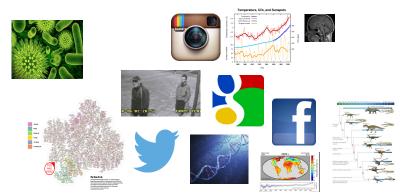
- What changes with missing data?
- Subspace Identifiability Problem
- Setup
- The Answer
- Application
- Conclusions

Outline

Introduction

- What changes with missing data?
- Subspace Identifiability Problem
- Setup
- ► The Answer
- Application
- Conclusions





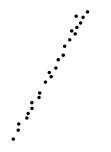
We have lots of data

And we want to analyze it.

Linear Algebra is one of our favorite tools.

Linear Algebra is one of our favorite tools.

Because data is often well-modeled by linear structures.



1	2	1	3	2	1	3	1	2	$\begin{bmatrix} 2\\4\\6\\2\\4\\6\end{bmatrix}$
2	4	2	6	4	2	6	2	4	4
3	6	3	9	6	3	9	3	6	6
1	2	1	3	2	1	3	1	2	2
2	4	2	6	4	2	6	2	4	4
3	6	3	9	6	3	9	3	6	6

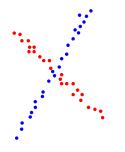
Sometimes one subspace is not enough.

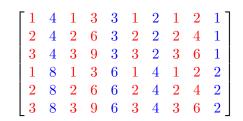


1	4	1	3	3	1	2	1	2	1]	
2	4	2	6	3	2	2	2	4	1	
3	4	3	9	3	3	2	3	6	$ \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix} $	
1	8	1	3	6	1	4	1	2	$2 \mid$	
2	8	2	6	6	2	4	2	4	$2 \mid$	
3	8	3	9	6	3	4	3	6	$2 \rfloor$	

Sometimes one subspace is not enough.

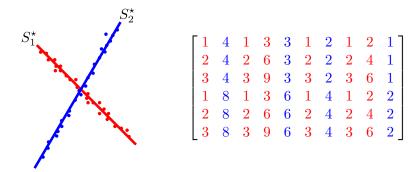
Enters Subspace Clustering.





Sometimes one subspace is not enough.

Enters Subspace Clustering.



That's all very nice, but... often data is missing!

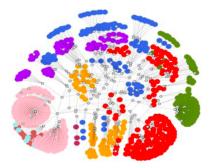
That's all very nice, but... often data is missing!

• Example: Vision.

Image: Hopkins 155 Dataset

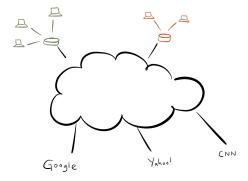
Often data is missing!

Other example: Network topology estimation



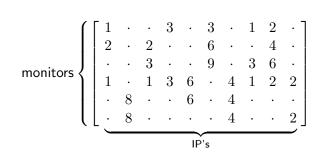
Often data is missing!

Other example: Network topology estimation



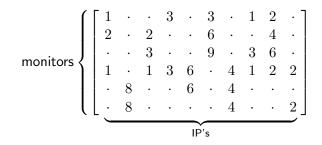
Often data is missing!

Other example: Network topology estimation



Often data is missing!

Other example: Network topology estimation



We still want to analyze these datasets.

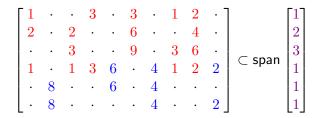
Subspace Clustering with Missing Data poses a new problem:

Subspace Clustering with Missing Data poses a new problem:

False subspaces.

Subspace Clustering with Missing Data poses a new problem:

False subspaces.



▶ We want to know how to identify **false** subspaces!

- We want to know how to identify false subspaces!
- We need to understand how things change when data is missing.

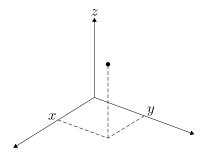
Outline

Introduction

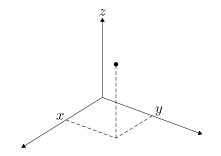
What changes with missing data?

- Subspace Identifiability Problem
- Setup
- ► The Answer
- Application
- Conclusions

Say I give you one datapoint.

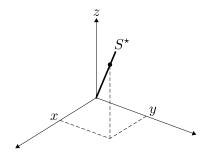


Say I give you one datapoint.



And I tell you it lies in a 1-dimensional subspace S^{\star} .

Then you can uniquely identify S^{\star} .



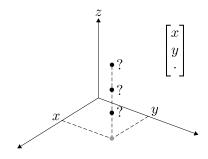
But what if data is missing?

But what if data is missing?

Say I give you a point *without* the *z* coordinate.

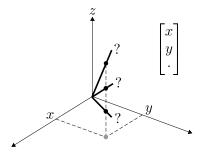
But what if data is missing?

Say I give you a point *without* the *z* coordinate.

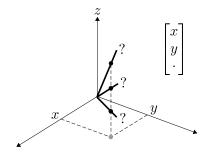


Then we cannot uniquely identify S^{\star} .

Then we cannot uniquely identify S^{\star} .



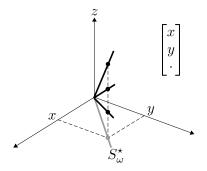
Then we cannot uniquely identify S^{\star} .



There are infinitely many *false* subspaces.

Nevertheless, all those *false* subspaces must satisfy one very important condition!

Nevertheless, all those *false* subspaces must satisfy one very important condition!



They must have the same canonical projection as S^{\star} .

Outline

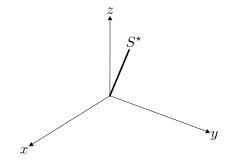
Introduction

 \blacktriangleright What changes with missing data? \checkmark

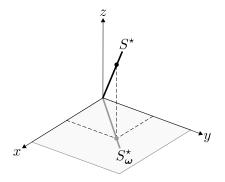
Subspace Identifiability Problem

- Setup
- ► The Answer
- Application
- Conclusions

 $S^{\star} := r$ -dimensional subspace of \mathbb{R}^d , r < d.

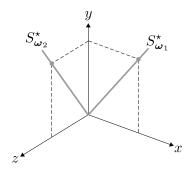


 $S^{\star}_{\pmb{\omega}} :=$ Projection of S^{\star} onto a canonical subspace.

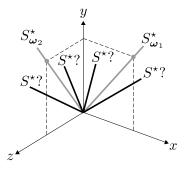


Suppose I don't tell you $S^{\star}...$

Suppose I don't tell you $S^{\star}...$ but I give you a set of projections of S^{\star} onto some canonical subspaces.



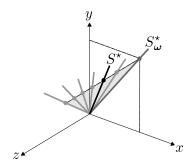
Suppose I don't tell you $S^\star...$ but I give you a set of projections of S^\star onto some canonical subspaces.



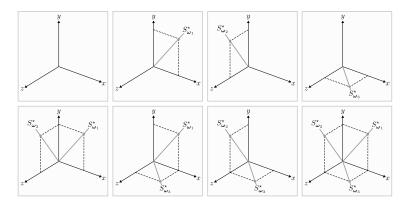
Can you uniquely determine S^{\star} from this set of projections?

Is this even possible?

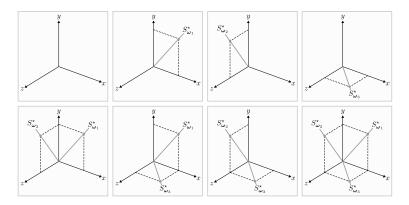
 There might be many subspaces that agree with the projections.



Well... it depends on which set of projections I give you.

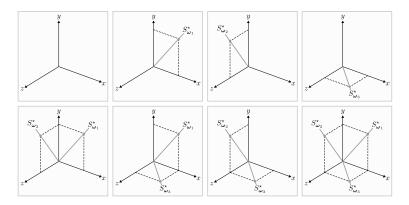


Well... it depends on which set of projections I give you.



Can you tell which are the good sets?

Well... it depends on which set of projections I give you.



Can you tell which are *the good sets*? This is what we focused on: which are *the good sets*.

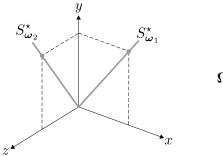
Outline

- Introduction
- \blacktriangleright What changes with missing data? \checkmark
- \blacktriangleright Subspace Identifiability Problem \checkmark

Setup

- ► The Answer
- Application
- Conclusions

The columns of Ω will index the given projections.

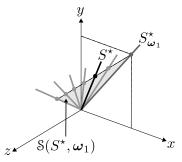


$$egin{array}{ccc} egin{array}{ccc} egin{array}{ccc} eta_1 & eta_2 \ 1 & 0 \ 1 & 1 \ 0 & 1 \end{array} \end{bmatrix}$$

Gr(r, ℝ^d) := Grassmannian manifold of r-dimensional subspaces in ℝ^d.

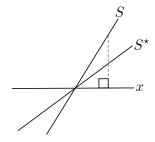
- Gr(r, ℝ^d) := Grassmannian manifold of r-dimensional subspaces in ℝ^d.
- $S(S^{\star}, \Omega) :=$ Set of *r*-dimensional subspaces that agree with S^{\star} on Ω .

- Gr(r, ℝ^d) := Grassmannian manifold of r-dimensional subspaces in ℝ^d.
- $S(S^*, \Omega) :=$ Set of *r*-dimensional subspaces that agree with S^* on Ω .

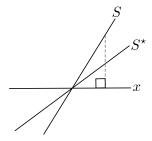


• S^{\star} is *r*-dimensional.

- ► S^{*} is *r*-dimensional.
- ▶ The projection of S^{\star} onto $\leq r$ canonical coordinates gives no information about S^{\star} .



- ► S^{*} is *r*-dimensional.
- ► The projection of S^{*} onto ≤ r canonical coordinates gives no information about S^{*}.



► \Rightarrow Assume w.l.o.g. that all projections are onto r + 1 canonical coordinates.

• For any matrix Ω' formed with a subset of the columns in Ω :

$$\boldsymbol{\Omega}' = \underbrace{ \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}}_{n(\boldsymbol{\Omega}') := \# \text{columns}} \right\} m(\boldsymbol{\Omega}') := \# \text{nonzero rows}$$

For any matrix Ω' formed with a subset of the columns in Ω :

$$\boldsymbol{\Omega}' = \underbrace{ \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}}_{n(\boldsymbol{\Omega}') := \# \text{columns}} \right\} m(\boldsymbol{\Omega}') := \# \text{nonzero rows}$$

• d - r projections are *necessary*, so we will assume w.l.o.g.

$$n(\mathbf{\Omega}) = d - r.$$

Outline

Introduction \checkmark

- \blacktriangleright What changes with missing data? \checkmark
- \blacktriangleright Subspace Identifiability Problem \checkmark
- ► Setup ✓
- The Answer
- Application
- Conclusions

Theorem (P.-A., Nowak, Boston, '14)

For almost every S^* , with respect to the uniform measure over $\operatorname{Gr}(r, \mathbb{R}^d)$, S^* is the only subspace in $S(S^*, \Omega)$ if and only if for every matrix Ω' formed with a subset of the columns in Ω ,

For almost every S^* , with respect to the uniform measure over $\operatorname{Gr}(r, \mathbb{R}^d)$, S^* is the only subspace in $S(S^*, \Omega)$ if and only if for every matrix Ω' formed with a subset of the columns in Ω ,

For almost every S^* , with respect to the uniform measure over $\operatorname{Gr}(r, \mathbb{R}^d)$, S^* is the only subspace in $\mathcal{S}(S^*, \Omega)$ if and only if for every matrix Ω' formed with a subset of the columns in Ω ,

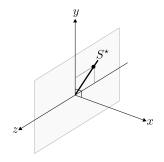
 $m(\mathbf{\Omega}') \geq n(\mathbf{\Omega}') + r.$

There is a set of measure zero of *bad* subspaces that we wouldn't identify.

For almost every S^* , with respect to the uniform measure over $\operatorname{Gr}(r, \mathbb{R}^d)$, S^* is the only subspace in $\mathcal{S}(S^*, \Omega)$ if and only if for every matrix Ω' formed with a subset of the columns in Ω ,

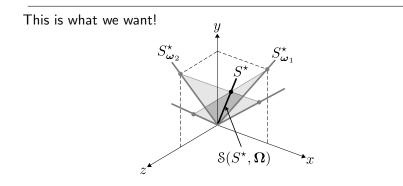
 $m(\mathbf{\Omega}') \geq n(\mathbf{\Omega}') + r.$

There is a set of measure zero of bad subspaces that we wouldn't identify.



For almost every S^* , with respect to the uniform measure over $\operatorname{Gr}(r, \mathbb{R}^d)$, S^* is the only subspace in $S(S^*, \Omega)$ if and only if for every matrix Ω' formed with a subset of the columns in Ω ,

For almost every S^* , with respect to the uniform measure over $\operatorname{Gr}(r, \mathbb{R}^d)$, S^* is the only subspace in $S(S^*, \Omega)$ if and only if for every matrix Ω' formed with a subset of the columns in Ω ,



For almost every S^* , with respect to the uniform measure over $\operatorname{Gr}(r, \mathbb{R}^d)$, S^* is the only subspace in $\mathcal{S}(S^*, \Omega)$ if and only if for every matrix Ω' formed with a subset of the columns in Ω ,

For almost every S^* , with respect to the uniform measure over $\operatorname{Gr}(r, \mathbb{R}^d)$, S^* is the only subspace in $\mathcal{S}(S^*, \Omega)$ if and only if for every matrix Ω' formed with a subset of the columns in Ω ,

 $m(\mathbf{\Omega}') \geq n(\mathbf{\Omega}') + r.$

This is the answer!

For almost every S^* , with respect to the uniform measure over $\operatorname{Gr}(r, \mathbb{R}^d)$, S^* is the only subspace in $\mathcal{S}(S^*, \Omega)$ if and only if for every matrix Ω' formed with a subset of the columns in Ω ,

 $m(\mathbf{\Omega}') \geq n(\mathbf{\Omega}') + r.$

This is the answer!

Every subset of n columns of Ω has at least n + r nonzero rows.

For almost every S^* , with respect to the uniform measure over $\operatorname{Gr}(r, \mathbb{R}^d)$, S^* is the only subspace in $\mathcal{S}(S^*, \Omega)$ if and only if for every matrix Ω' formed with a subset of the columns in Ω ,

$$m(\mathbf{\Omega}') \geq n(\mathbf{\Omega}') + r.$$

This is the answer!

Every subset of n columns of Ω has at least n + r nonzero rows.

Outline

Introduction

- \blacktriangleright What changes with missing data? \checkmark
- \blacktriangleright Subspace Identifiability Problem \checkmark
- ► Setup ✓
- \blacktriangleright The Answer \checkmark
- Application
- Conclusions

Low-Rank Matrix Completion (LRMC)

Low-Rank Matrix Completion (LRMC)

 Given a subset of entries in a rank r matrix, exactly recover all of the missing entries.

$$\mathbf{X}_{\Omega} = \begin{bmatrix} 1 & \cdot & 3 & \cdot \\ 1 & 2 & \cdot & \cdot \\ \cdot & 2 & 3 & \cdot \\ \cdot & \cdot & \cdot & 4 \\ \cdot & \cdot & \cdot & 4 \end{bmatrix} \quad \Rightarrow \quad \widehat{\mathbf{X}} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

Low-Rank Matrix Completion (LRMC)

 Given a subset of entries in a rank r matrix, exactly recover all of the missing entries.

$$\mathbf{X}_{\mathbf{\Omega}} = \begin{bmatrix} 1 & \cdot & 3 & \cdot \\ 1 & 2 & \cdot & \cdot \\ \cdot & 2 & 3 & \cdot \\ \cdot & \cdot & \cdot & 4 \\ \cdot & \cdot & \cdot & 4 \end{bmatrix} \quad \Rightarrow \quad \widehat{\mathbf{X}} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

 \blacktriangleright \sim Identifying the subspace spanned by the columns, $S^{\star}.$

Low-Rank Matrix Completion (LRMC)

 Given a subset of entries in a rank r matrix, exactly recover all of the missing entries.

$$\mathbf{X}_{\mathbf{\Omega}} = \begin{bmatrix} 1 & \cdot & 3 & \cdot \\ 1 & 2 & \cdot & \cdot \\ \cdot & 2 & 3 & \cdot \\ \cdot & \cdot & \cdot & 4 \\ \cdot & \cdot & \cdot & 4 \end{bmatrix} \quad \Rightarrow \quad \widehat{\mathbf{X}} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

 \blacktriangleright \sim Identifying the subspace spanned by the columns, $S^{\star}.$ Here

$$\widehat{S} = \operatorname{span} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}$$

How do we know we got the right completion (subspace)?

How do we know we got the right completion (subspace)?

Maybe the real completion is:

$$\mathbf{X}_{\mathbf{\Omega}} = \begin{bmatrix} 1 & \cdot & 3 & \cdot \\ 1 & 2 & \cdot & \cdot \\ \cdot & 2 & 3 & \cdot \\ \cdot & \cdot & \cdot & 4 \\ \cdot & \cdot & \cdot & 4 \end{bmatrix} \quad \Rightarrow \quad \mathbf{X} = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 1 & 2 & 3 & 2 \\ 1 & 2 & 3 & 2 \\ 2 & 4 & 6 & 4 \\ 2 & 4 & 6 & 4 \end{bmatrix}$$

How do we know we got the right completion (subspace)?

Maybe the real completion is:

$$\mathbf{X}_{\mathbf{\Omega}} = \begin{bmatrix} 1 & \cdot & 3 & \cdot \\ 1 & 2 & \cdot & \cdot \\ \cdot & 2 & 3 & \cdot \\ \cdot & \cdot & \cdot & 4 \\ \cdot & \cdot & \cdot & 4 \end{bmatrix} \quad \Rightarrow \quad \mathbf{X} = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 1 & 2 & 3 & 2 \\ 1 & 2 & 3 & 2 \\ 2 & 4 & 6 & 4 \\ 2 & 4 & 6 & 4 \end{bmatrix}$$

And the real subspace is

$$S^{\star} = \operatorname{span} \begin{bmatrix} 1\\1\\1\\2\\2 \end{bmatrix}$$

How do we know we got the right completion (subspace)?

How do we know we got the right completion (subspace)? Known results e.g. (Candès and Recht, '09)

Require random observed entries.

- Require random observed entries.
 - May not be justified.

- Require random observed entries.
 - May not be justified.
- Require incoherence

- Require random observed entries.
 - May not be justified.
- Require incoherence
 - Sufficient, but not necessary condition.

- Require random observed entries.
 - May not be justified.
- Require incoherence
 - Sufficient, but not necessary condition.
 - Generally unverifiable or unjustified in practice.

- Require random observed entries.
 - May not be justified.
- Require incoherence
 - Sufficient, but not necessary condition.
 - Generally unverifiable or unjustified in practice.
- Work with high probability (if assumptions are met).

How do we know we got the right completion (subspace)? Known results e.g. (Candès and Recht, '09)

- Require random observed entries.
 - May not be justified.
- Require incoherence
 - Sufficient, but not necessary condition.
 - Generally unverifiable or unjustified in practice.
- Work with high probability (if assumptions are met).

What if these assumptions are not met? How can we validate a completion?

Corollary (P.-A., Nowak, Boston, '14)

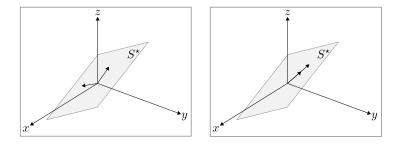
Let the columns of X be drawn independently according to ν , an absolutely continuous distribution with respect to the Lebesgue measure on S^* . Suppose X_{Ω} can be partitioned into two sets of columns, X_{Ω_1} and X_{Ω_2} , such that Ω_2 satisfies the conditions of the subspace identifiability theorem. Let \widehat{S} be the output of running an LRMC algorithm on X_{Ω_1} . Then for almost every S^* , and almost surely with respect to ν , X_{Ω_2} fits in \widehat{S} if and only if $\widehat{S} = S^*$.

Corollary (P.-A., Nowak, Boston, '14)

Let the columns of \mathbf{X} be drawn independently according to ν , an absolutely continuous distribution with respect to the Lebesgue measure on S^* . Suppose \mathbf{X}_{Ω} can be partitioned into two sets of columns, \mathbf{X}_{Ω_1} and \mathbf{X}_{Ω_2} , such that Ω_2 satisfies the conditions of the subspace identifiability theorem. Let \hat{S} be the output of running an LRMC algorithm on \mathbf{X}_{Ω_1} . Then for almost every S^* , and almost surely with respect to ν , \mathbf{X}_{Ω_2} fits in \hat{S} if and only if $\hat{S} = S^*$.

Just to make sure we have enough useful data

Just to make sure we have enough useful data



Corollary (P.-A., Nowak, Boston, '14)

Let the columns of \mathbf{X} be drawn independently according to ν , an absolutely continuous distribution with respect to the Lebesgue measure on S^* . Suppose \mathbf{X}_{Ω} can be partitioned into two sets of columns, \mathbf{X}_{Ω_1} and \mathbf{X}_{Ω_2} , such that Ω_2 satisfies the conditions of the subspace identifiability theorem. Let \hat{S} be the output of running an LRMC algorithm on \mathbf{X}_{Ω_1} . Then for almost every S^* , and almost surely with respect to ν , \mathbf{X}_{Ω_2} fits in \hat{S} if and only if $\hat{S} = S^*$.

Corollary (P.-A., Nowak, Boston, '14)

Let the columns of \mathbf{X} be drawn independently according to ν , an absolutely continuous distribution with respect to the Lebesgue measure on S^* . Suppose \mathbf{X}_{Ω} can be partitioned into two sets of columns, \mathbf{X}_{Ω_1} and \mathbf{X}_{Ω_2} , such that Ω_2 satisfies the conditions of the subspace identifiability theorem. Let \widehat{S} be the output of running an LRMC algorithm on \mathbf{X}_{Ω_1} . Then for almost every S^* , and almost surely with respect to ν , \mathbf{X}_{Ω_2} , fits in \widehat{S} if and only if $\widehat{S} = S^*$.

Corollary (P.-A., Nowak, Boston, '14)

Let the columns of X be drawn independently according to ν , an absolutely continuous distribution with respect to the Lebesgue measure on S^* . Suppose X_{Ω} can be partitioned into two sets of columns, X_{Ω_1} and X_{Ω_2} , such that Ω_2 satisfies the conditions of the subspace identifiability theorem. Let \hat{S} be the output of running an LRMC algorithm on X_{Ω_1} . Then for almost every S^* , and almost surely with respect to ν , X_{Ω_2} fits in \hat{S} if and only if $\hat{S} = S^*$.

Corollary (P.-A., Nowak, Boston, '14)

Let the columns of X be drawn independently according to ν , an absolutely continuous distribution with respect to the Lebesgue measure on S^* . Suppose X_{Ω} can be partitioned into two sets of columns, X_{Ω_1} and X_{Ω_2} , such that Ω_2 satisfies the conditions of the subspace identifiability theorem. Let \hat{S} be the output of running an LRMC algorithm on X_{Ω_1} . Then for almost every S^* , and almost surely with respect to ν , X_{Ω_2} fits in \hat{S} if and only if $\hat{S} = S^*$.

In contrast, our results:

Work for arbitrary observation schemes.

- Work for arbitrary observation schemes.
- Work for almost every subspace.

- Work for arbitrary observation schemes.
- Work for almost every subspace.
 - ► No incoherence assumption required.

- Work for arbitrary observation schemes.
- Work for almost every subspace.
 - No incoherence assumption required.
- Hold with probability 1.

Outline

- Introduction
- \blacktriangleright What changes with missing data? \checkmark
- \blacktriangleright Subspace Identifiability Problem \checkmark
- ► Setup ✓
- \blacktriangleright The Answer \checkmark
- Application \checkmark
- Conclusions

Conclusions

Now we know that:

 It is possible to uniquely identify an *r*-dimensional subspace S^{*} from its projections onto Ω.

Conclusions

Now we know that:

- It is possible to uniquely identify an r-dimensional subspace S^{*} from its projections onto Ω.
- If and only if every subset of n columns of ${\bf \Omega}$ has at least n+r nonzero rows.

Conclusions

Now we know that:

- It is possible to uniquely identify an r-dimensional subspace S^{*} from its projections onto Ω.
- If and only if every subset of n columns of Ω has at least n+r nonzero rows.

• Whence
$$S^{\star} = \ker \mathbf{A}^{\mathsf{T}}$$
.

Thanks.