Adversarial Principal Component Analysis

Daniel Pimentel-Alarcón,

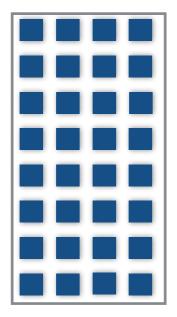
Ari Biswas,

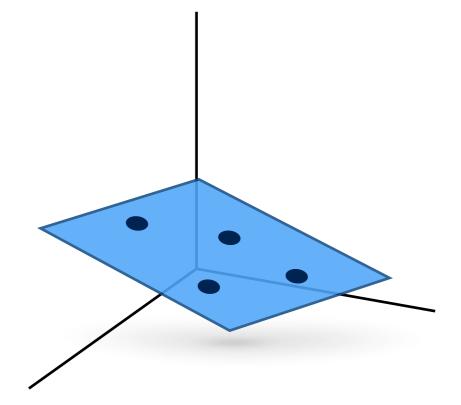
Claudia Solís-Lemus



Wisconsin Institute for Discovery UNIVERSITY of WISCONSIN-MADISON

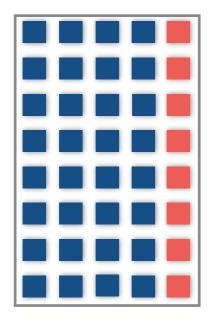
ISIT 2017

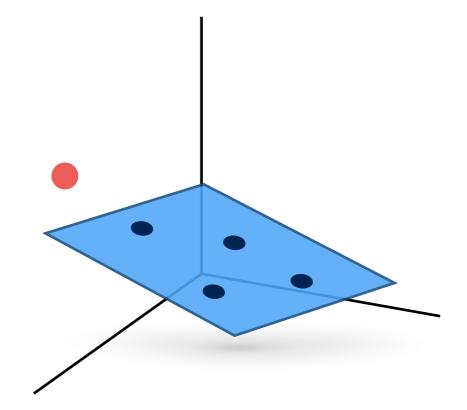




PCA

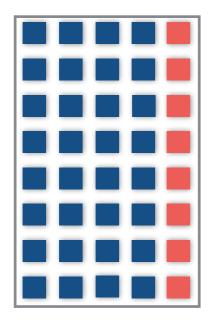
Finds a subspace that explains data

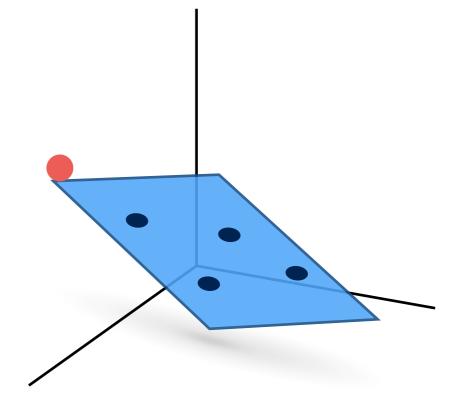




PCA

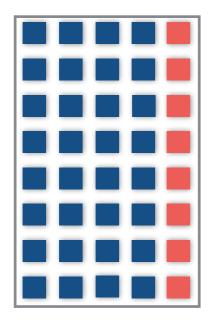
An outlier would *tilt* the subspace.

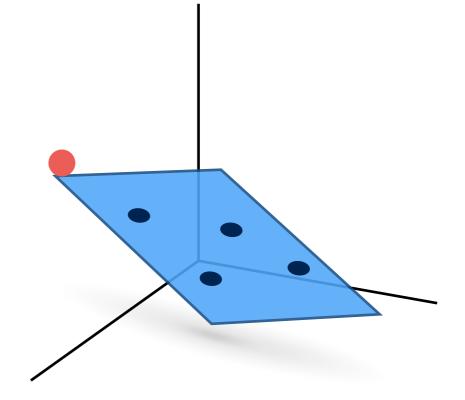


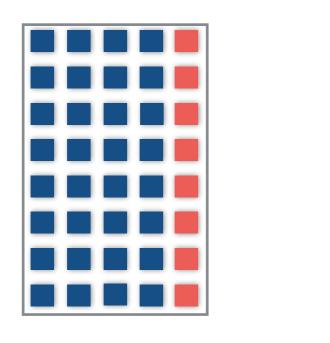


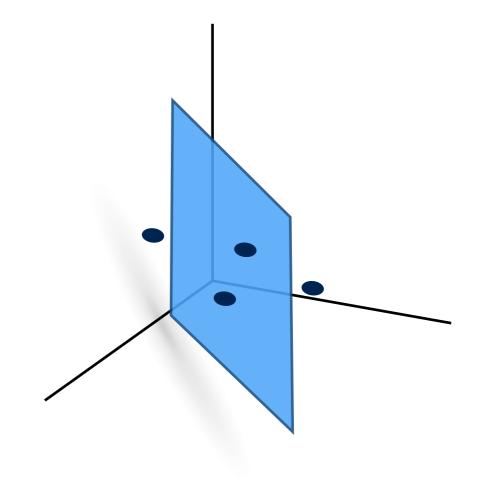
PCA

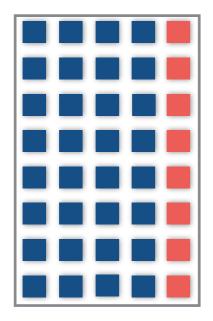
An outlier would *tilt* the subspace.

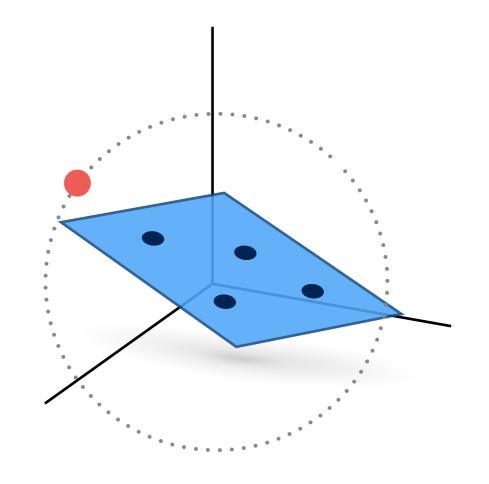


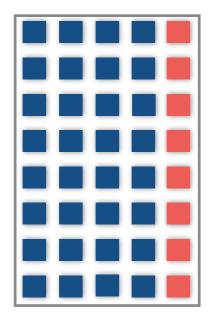


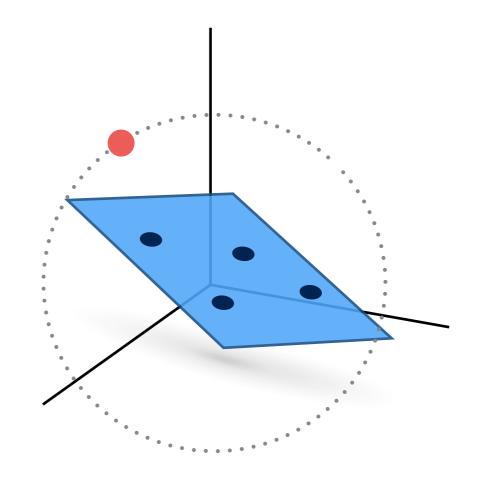


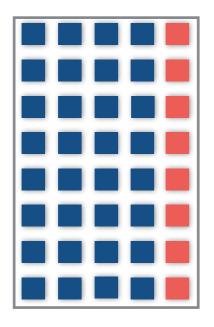


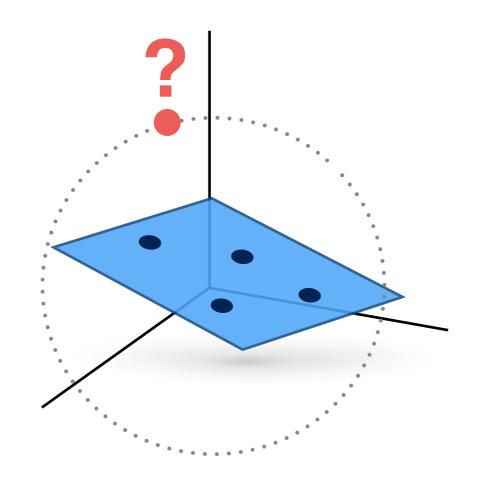












Laura Balzano

Laura Balzano

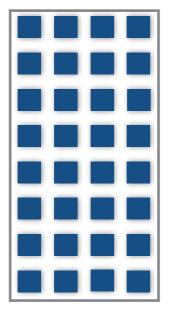
Isn't that already known?!

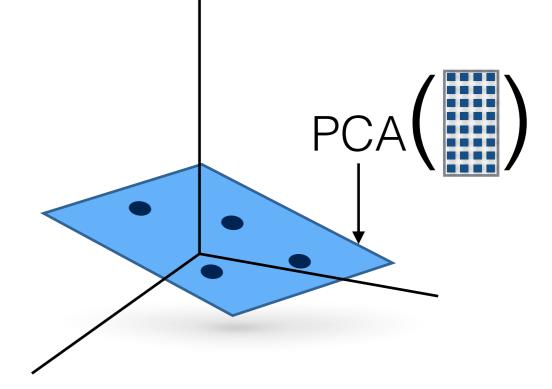
John Lipor

Laura Balzano

John Lipor

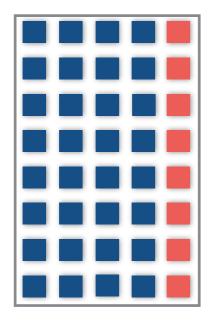
Nigel Boston

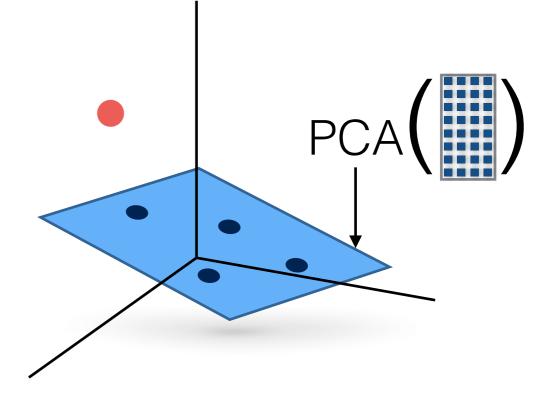




Rank-One Updates

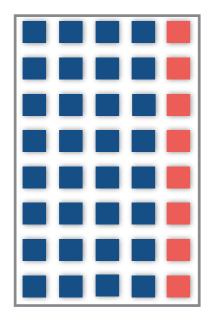
Given a new point •, how do we compute new PCA efficiently?

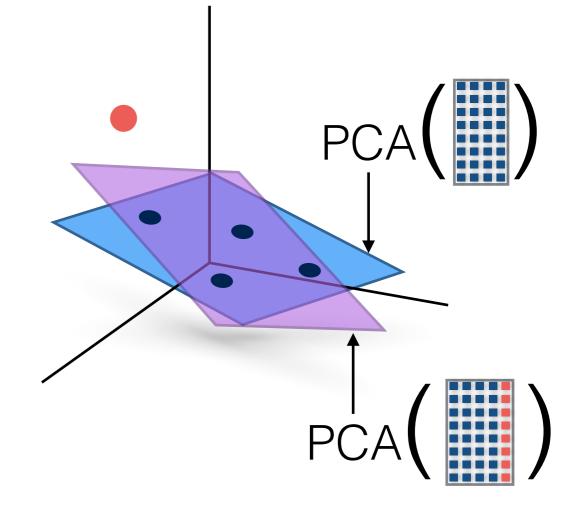




Rank-One Updates

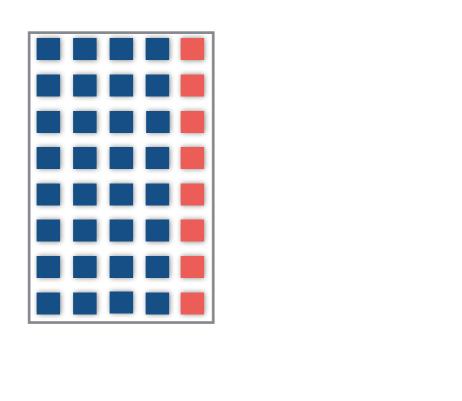
Given a new point •, how do we compute new PCA efficiently?

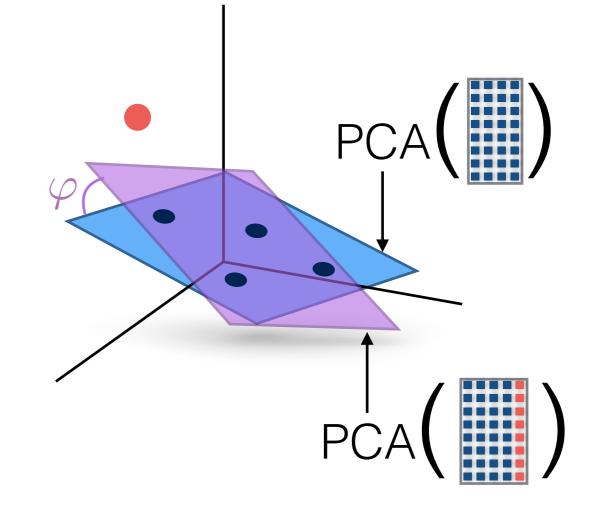




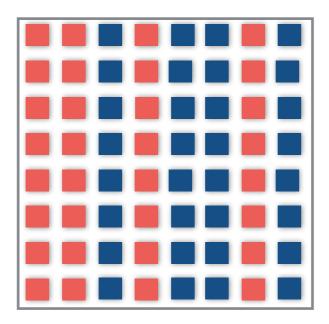
Rank-One Updates

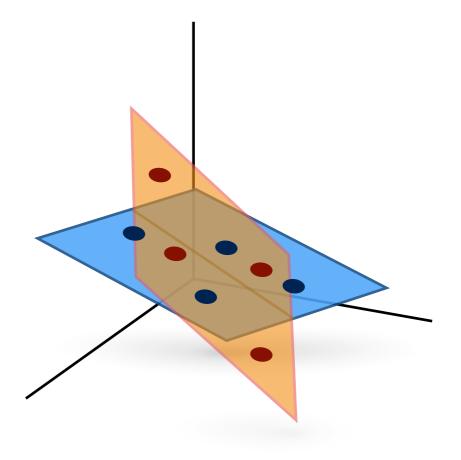
Given a new point •, how do we compute new PCA efficiently?

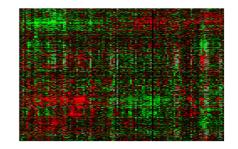


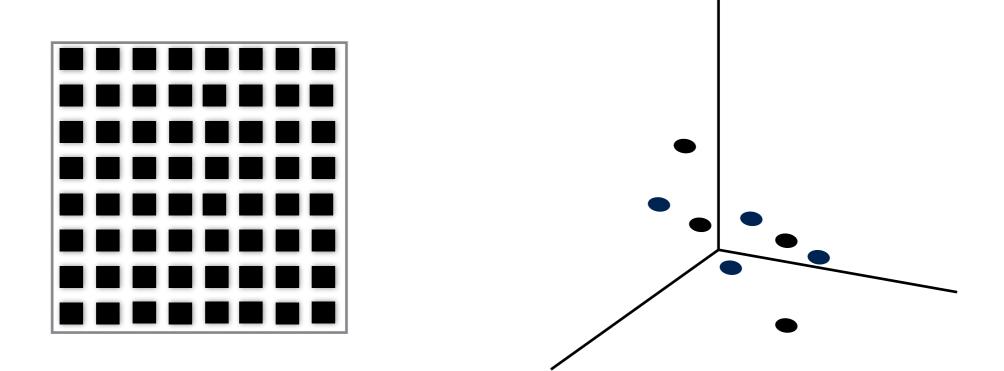


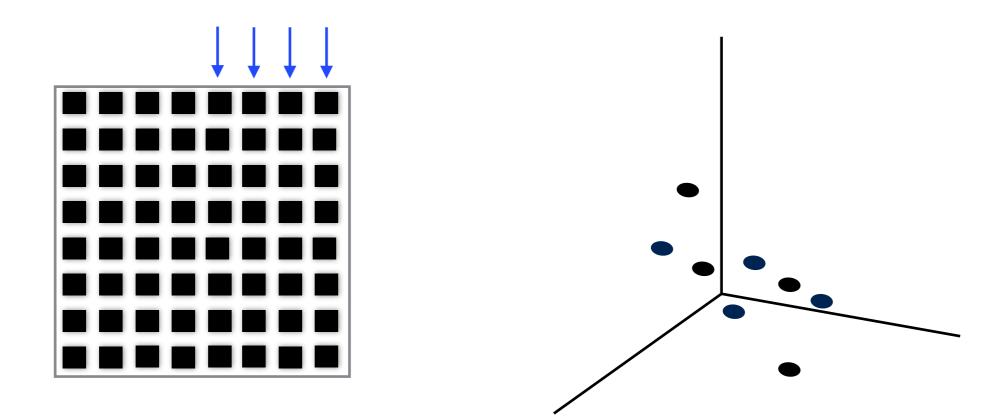
Where should we put \bullet to maximize φ ?

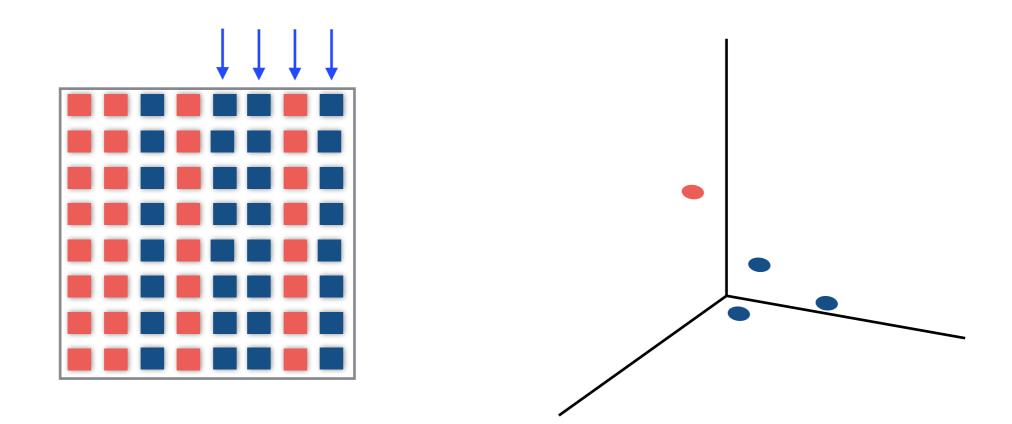


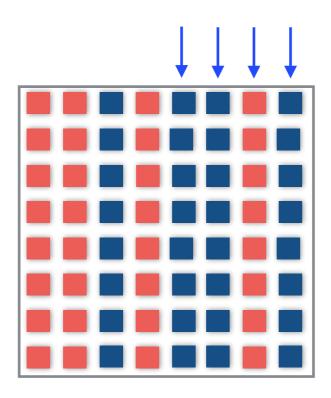


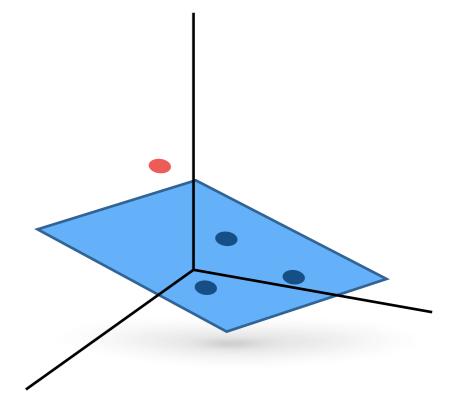


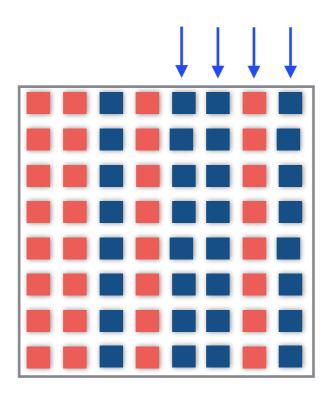


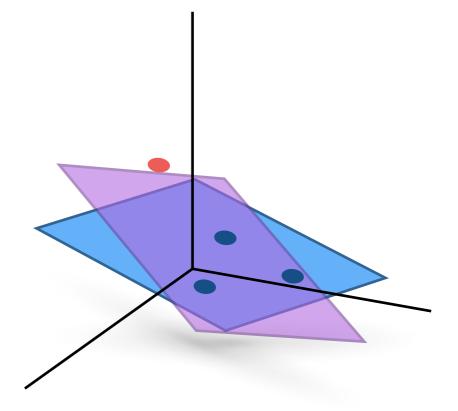


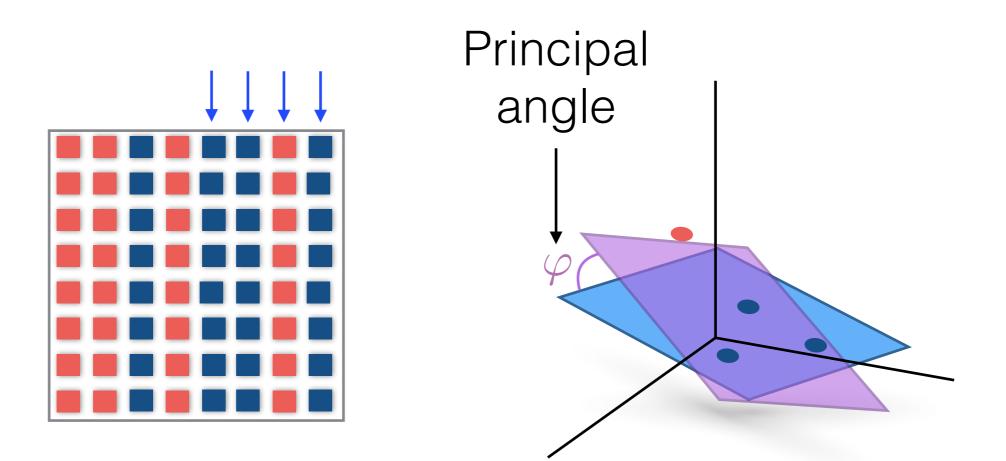




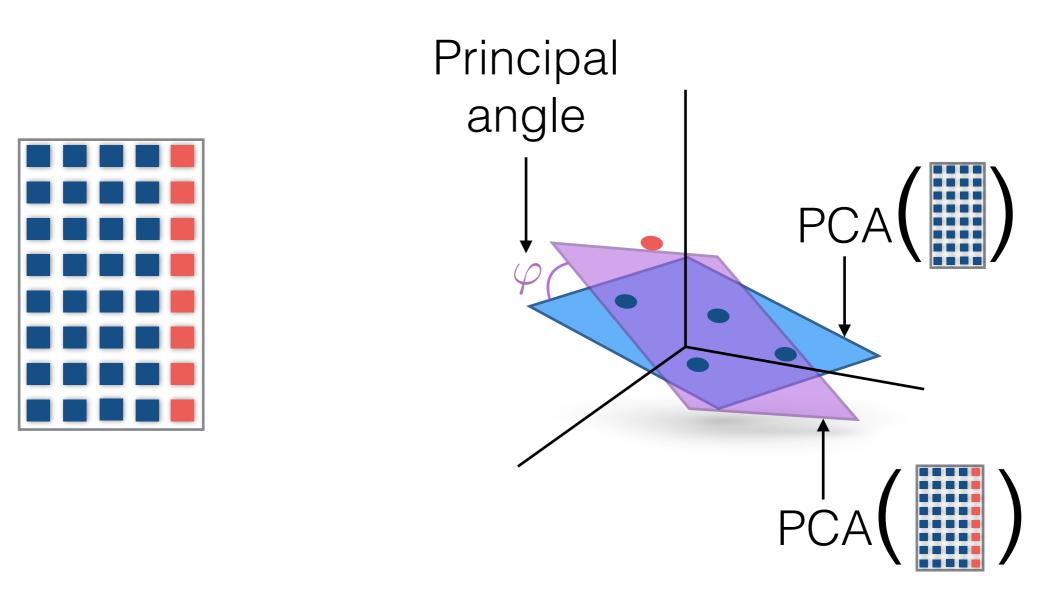




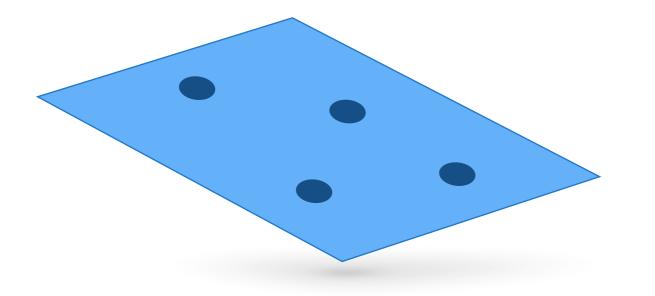


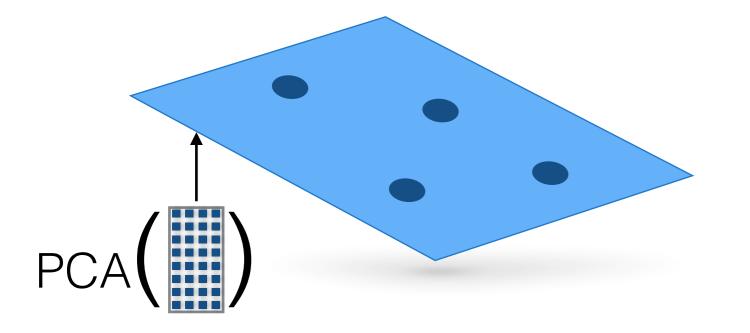


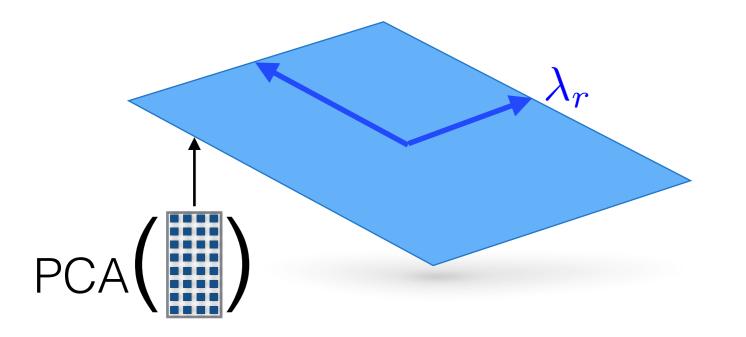
We want to bound the error φ



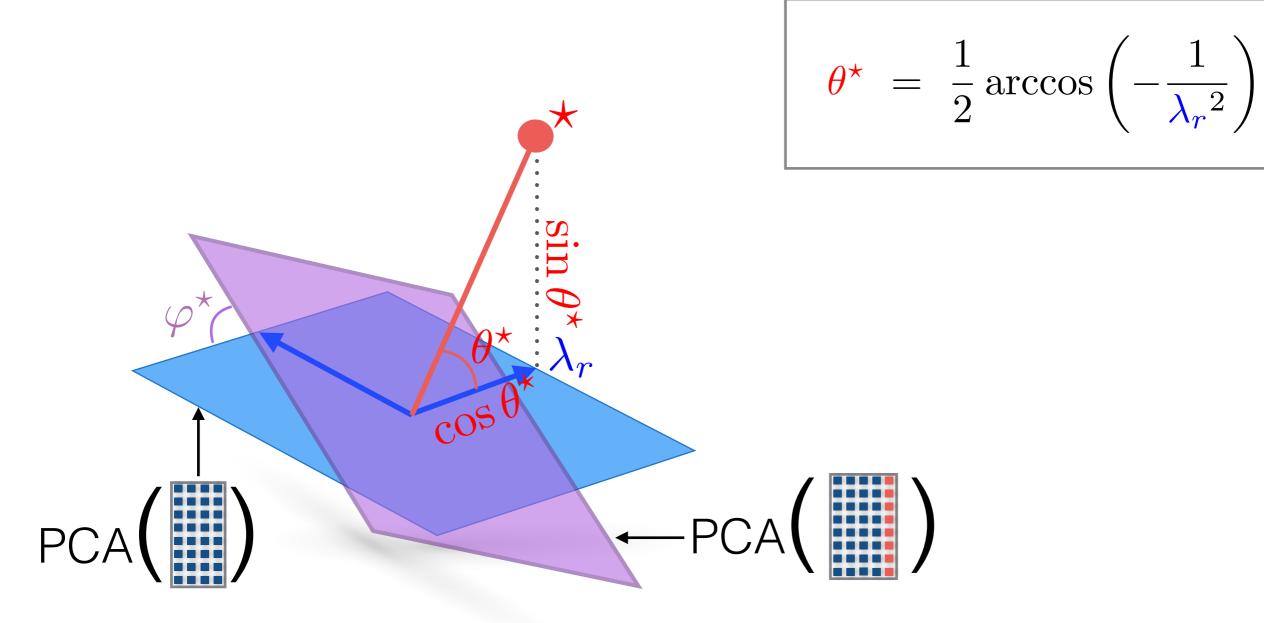
Where should we put \bullet to maximize φ ?







$$\theta^{\star} = \frac{1}{2} \arccos\left(-\frac{1}{\lambda_r^2}\right)$$



$$\theta^{\star} = \frac{1}{2} \arccos\left(-\frac{1}{\lambda_{r}^{2}}\right)$$

$$\varphi^{\star} = \arccos\left(\frac{\sin^{2}\theta^{\star} - \sigma_{\star}^{2}}{\sqrt{(\sin^{2}\theta^{\star} - \sigma_{\star}^{2})^{2} + (\sin\theta^{\star}\cos\theta^{\star})^{2}}}\right)$$

$$\varphi^{\star} = \arccos\left(\frac{\sin^{2}\theta^{\star} - \sigma_{\star}^{2}}{\sqrt{(\sin^{2}\theta^{\star} - \sigma_{\star}^{2})^{2} + (\sin\theta^{\star}\cos\theta^{\star})^{2}}}\right)$$

$$\varphi^{\star} = \frac{(\lambda_{r}^{2} + 1) + \sqrt{(\lambda_{r}^{2} + 1)^{2} - 4\lambda_{r}^{2}\sin^{2}\theta^{\star}}}{2}.$$

$$PCA\left(\bigcup\right)$$

THE FOLLOWING **PREVIEW** HAS BEEN APPROVED FOR **ALL AUDIENCES** BY THE MOTION PICTURE ASSOCIATION OF AMERICA INC.

THE FILM ADVERTISED HAS BEEN RATED

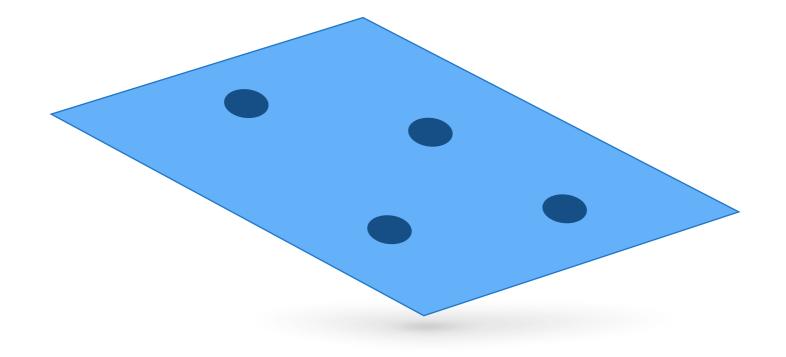
PG GENERAL AUDIENCES

All Ages Admitted

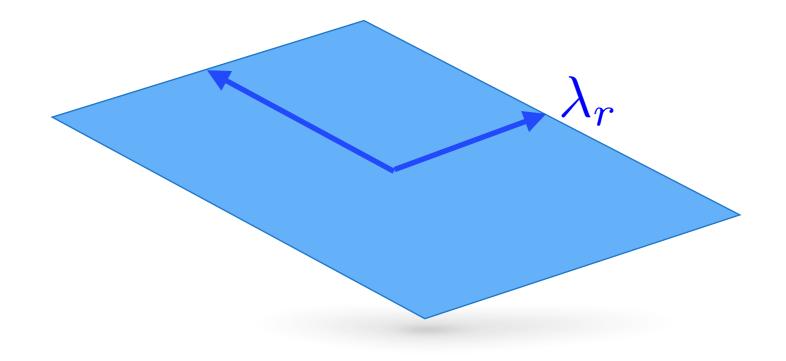
Linear Algebra, Geometry, Analysis

www.filmratings.com

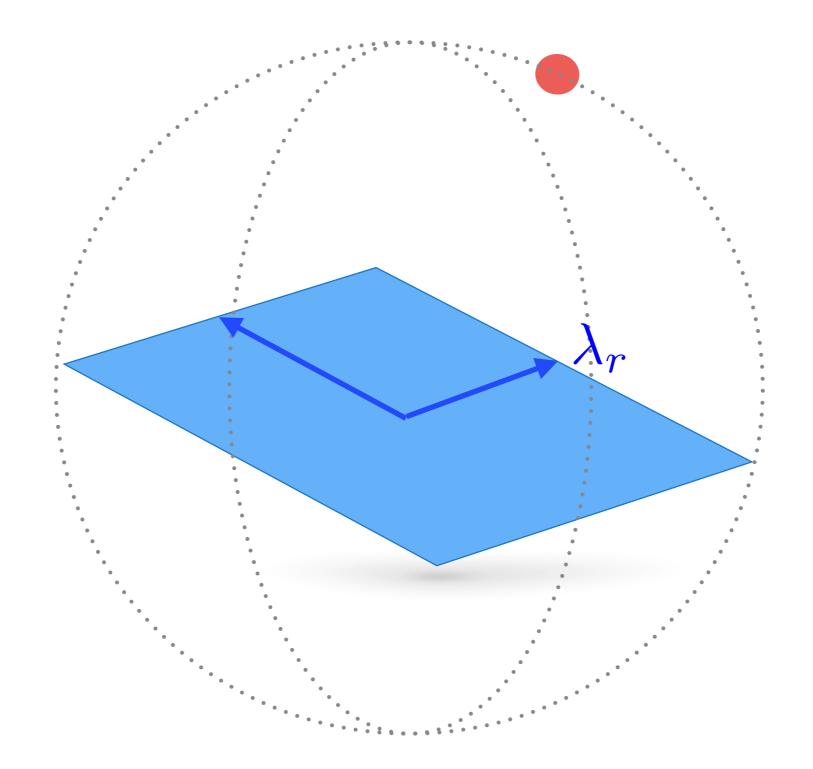
www.mpaa.org



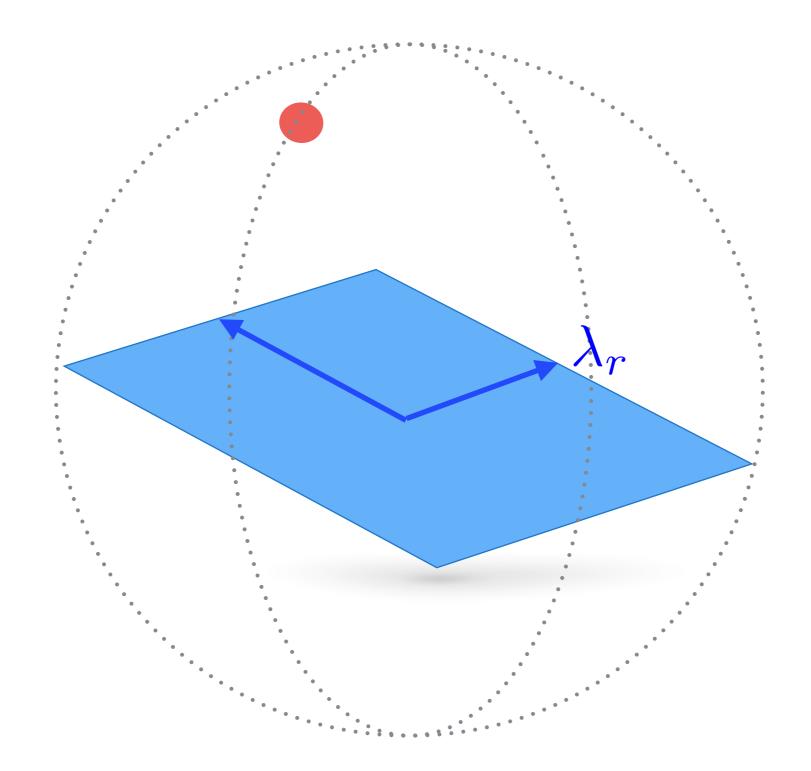
A flavor of the proof



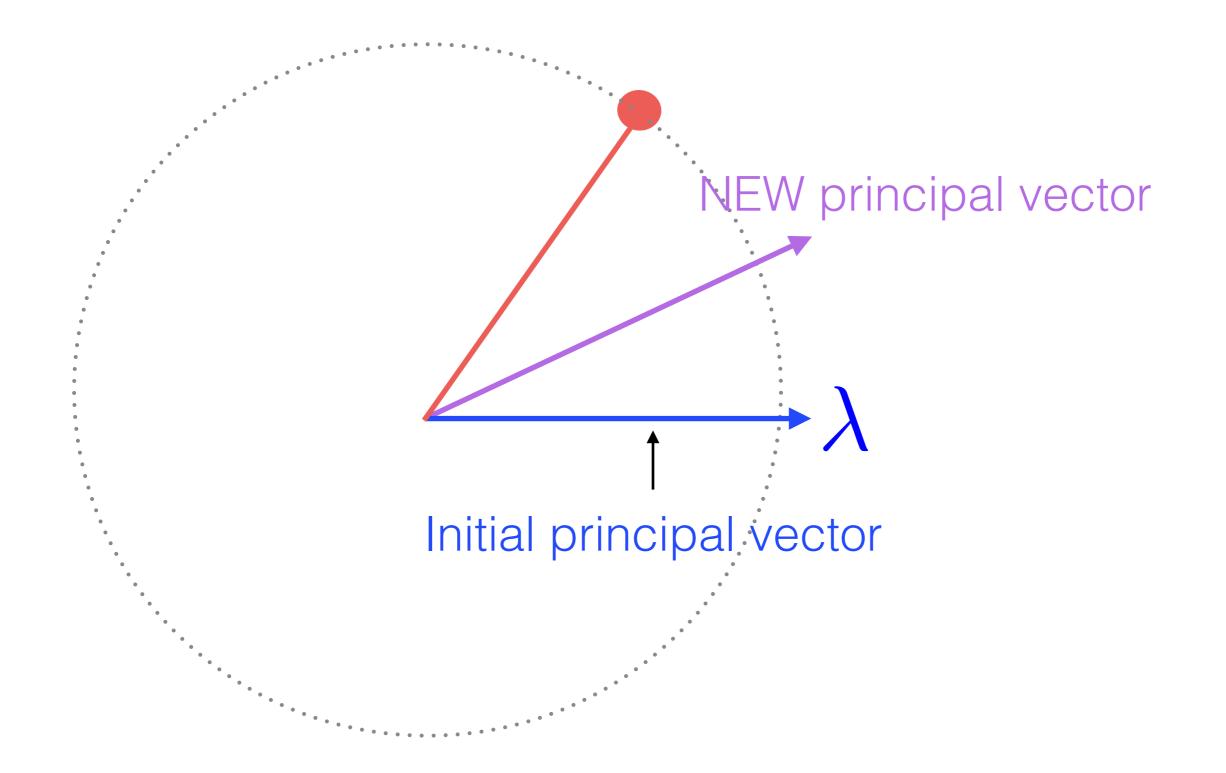
A flavor of the proof



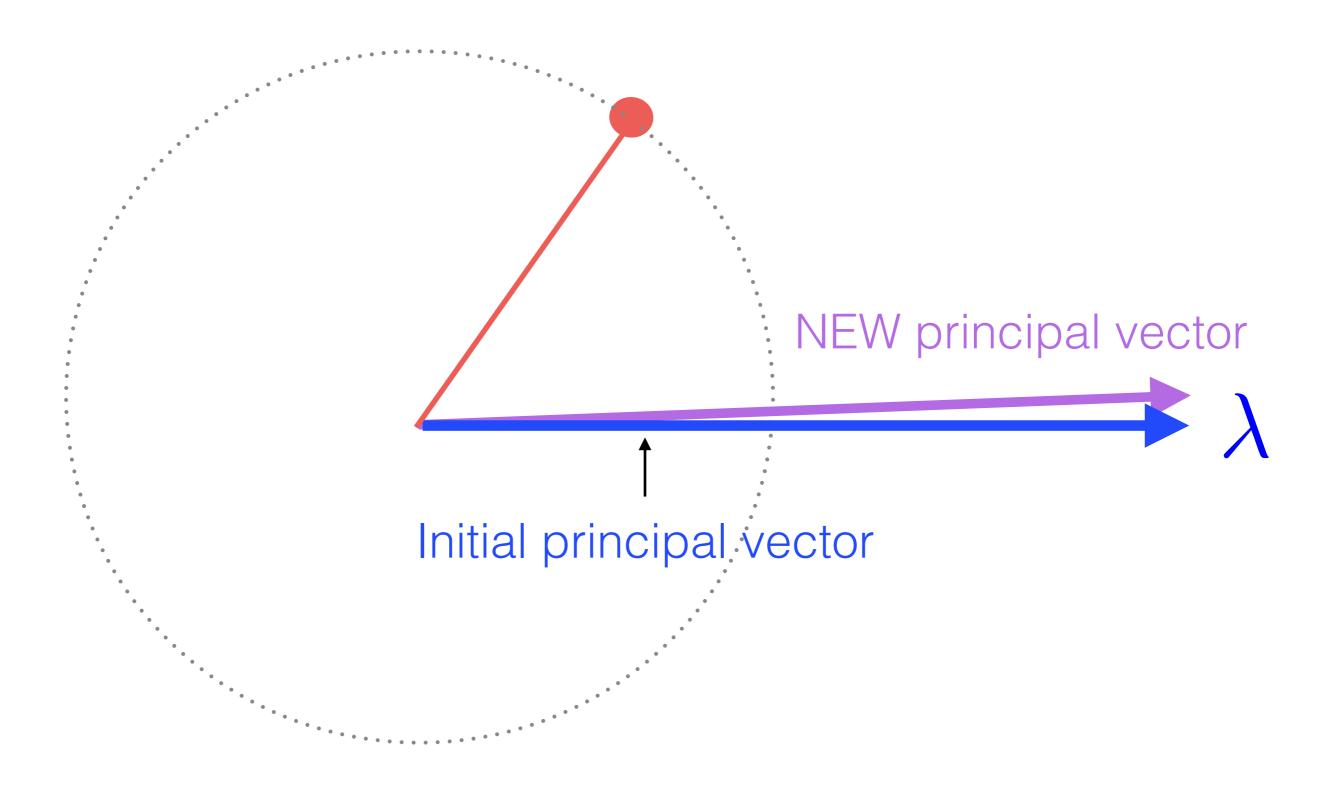
A flavor of the proof Fix the magnitude of



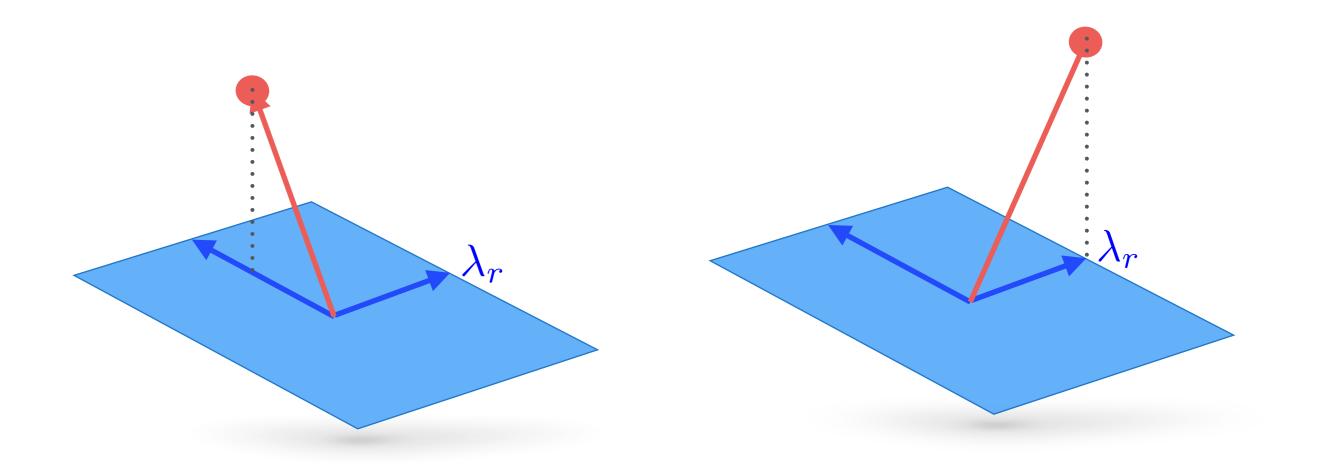
A flavor of the proof Fix the magnitude of

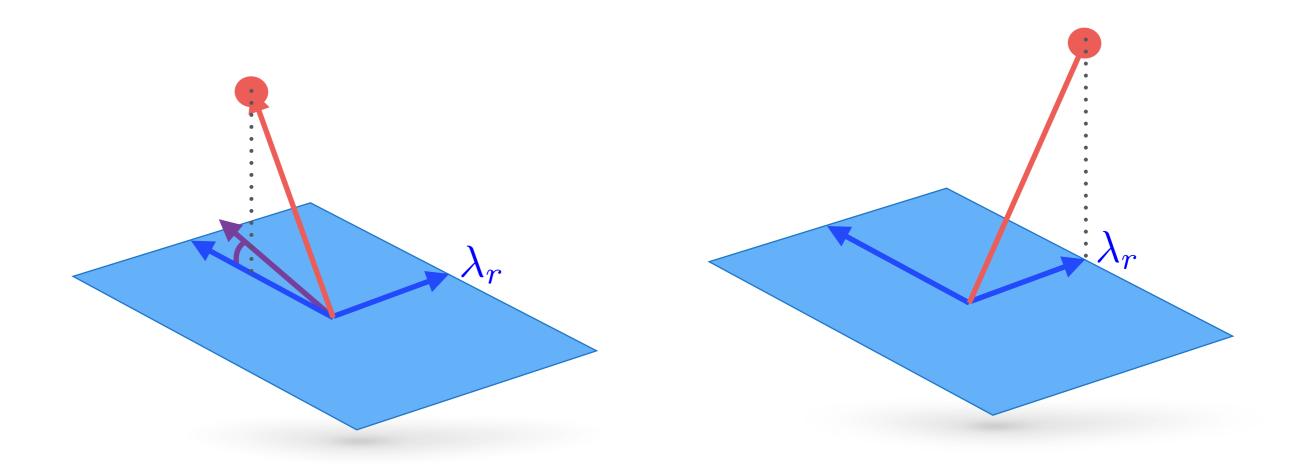


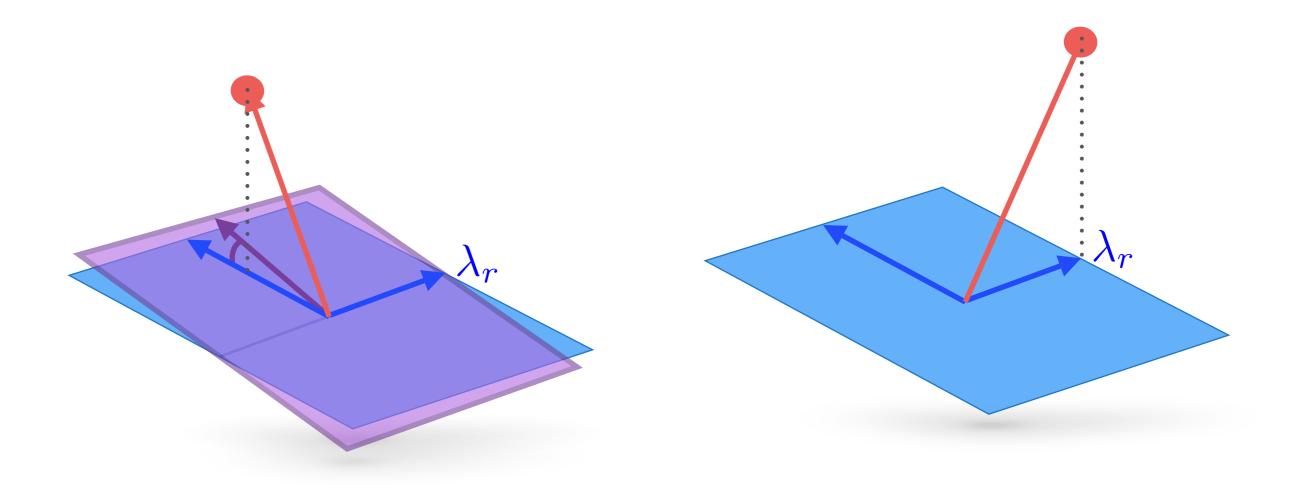
A flavor of the proof Larger vectors are harder to tilt

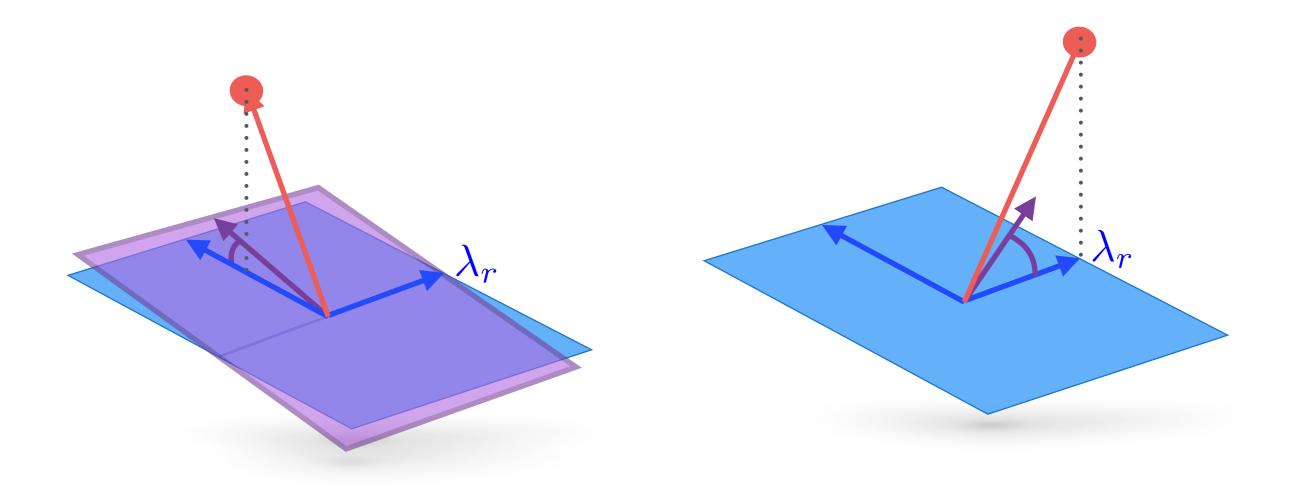


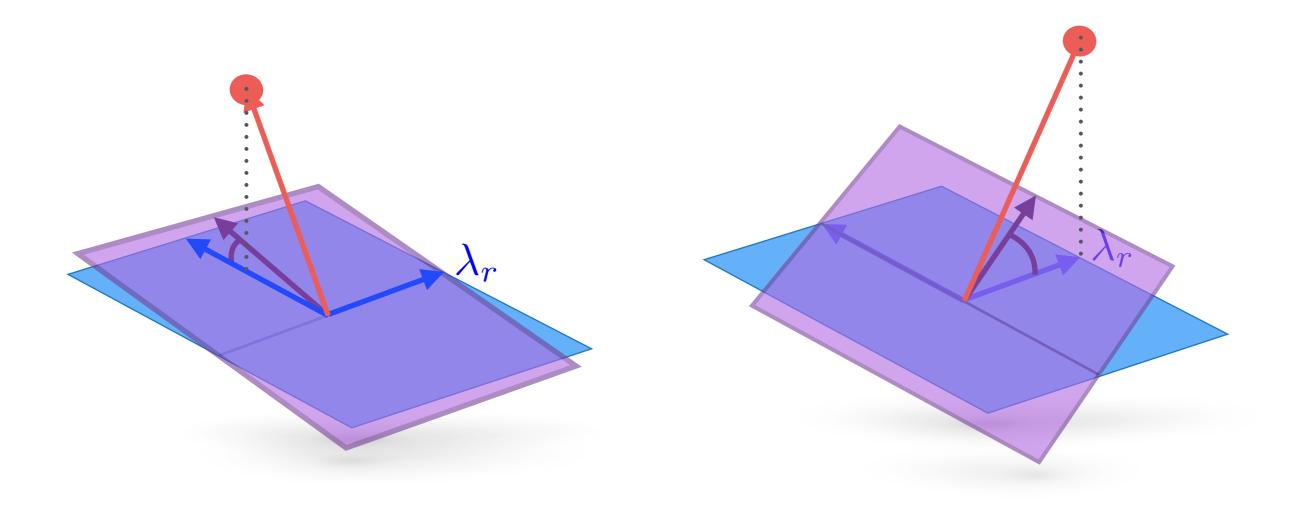
A flavor of the proof Larger vectors are harder to tilt

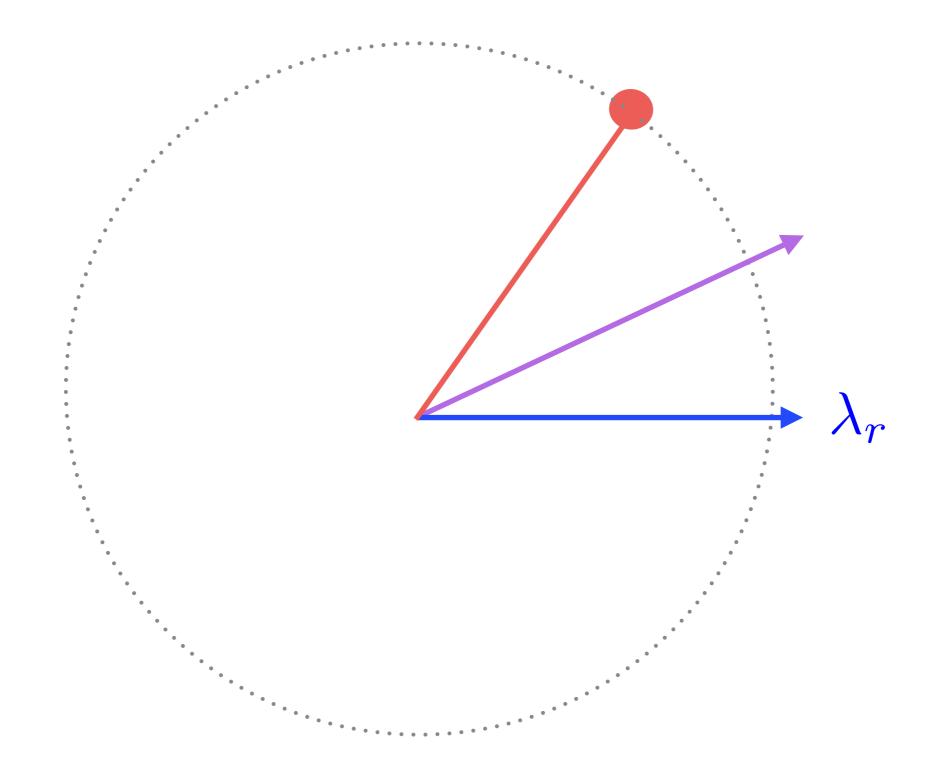


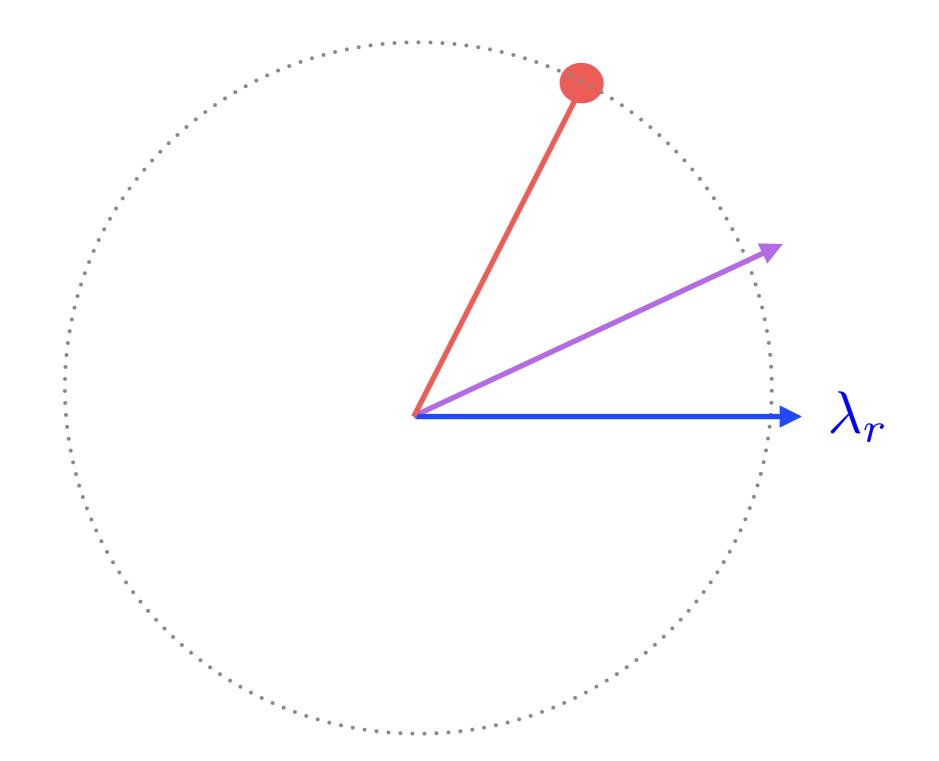


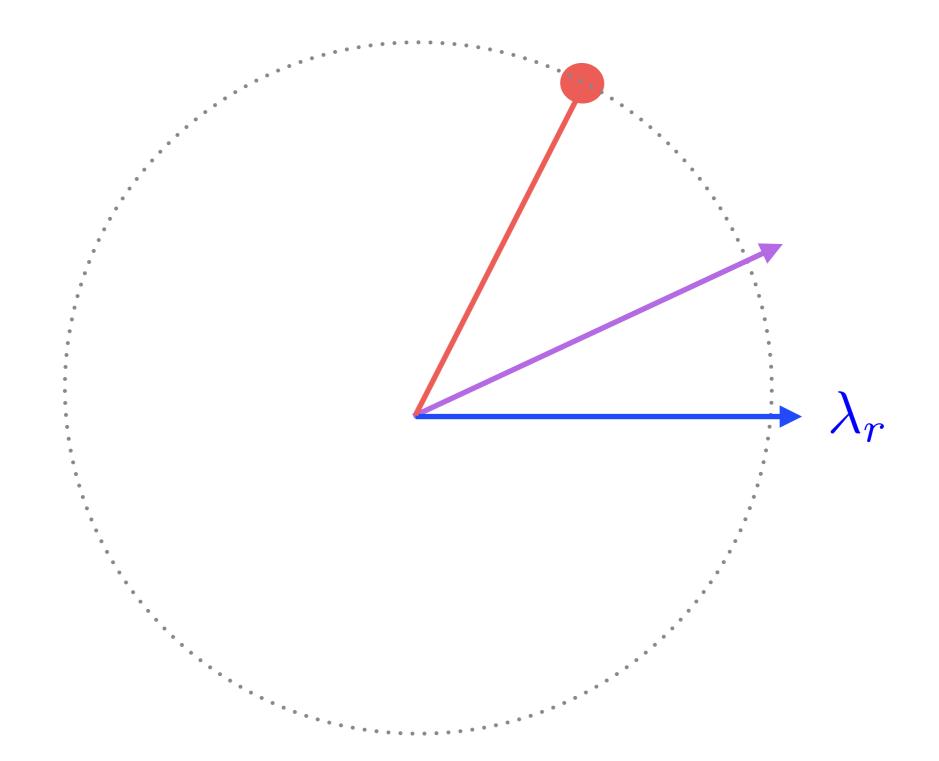


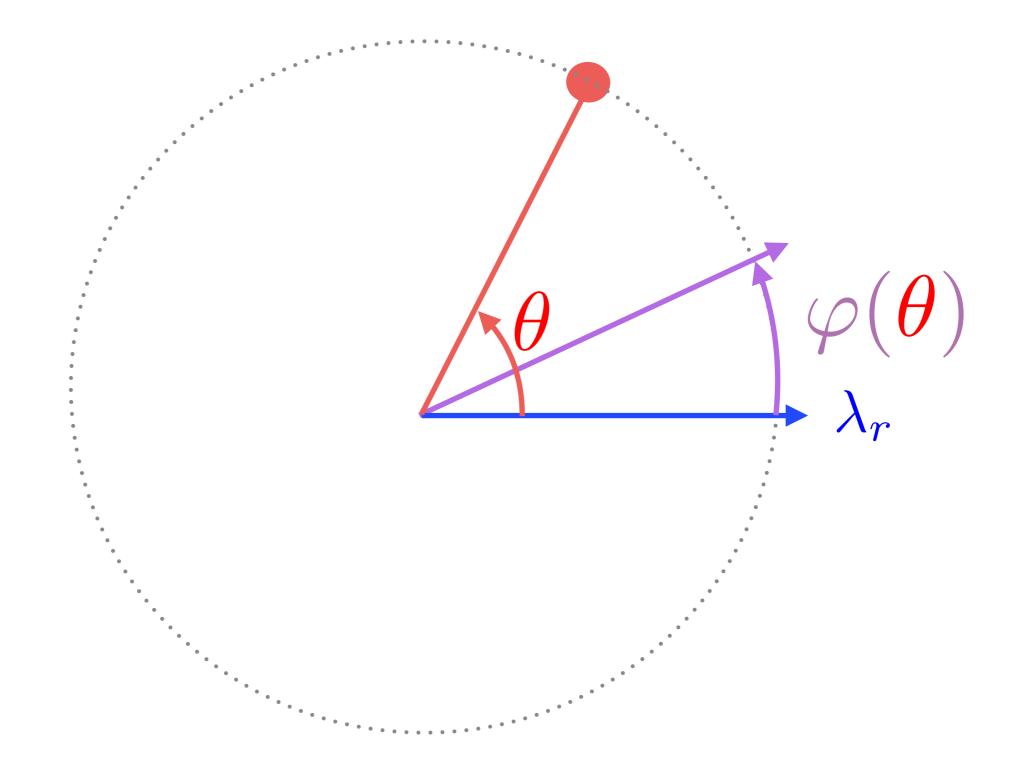


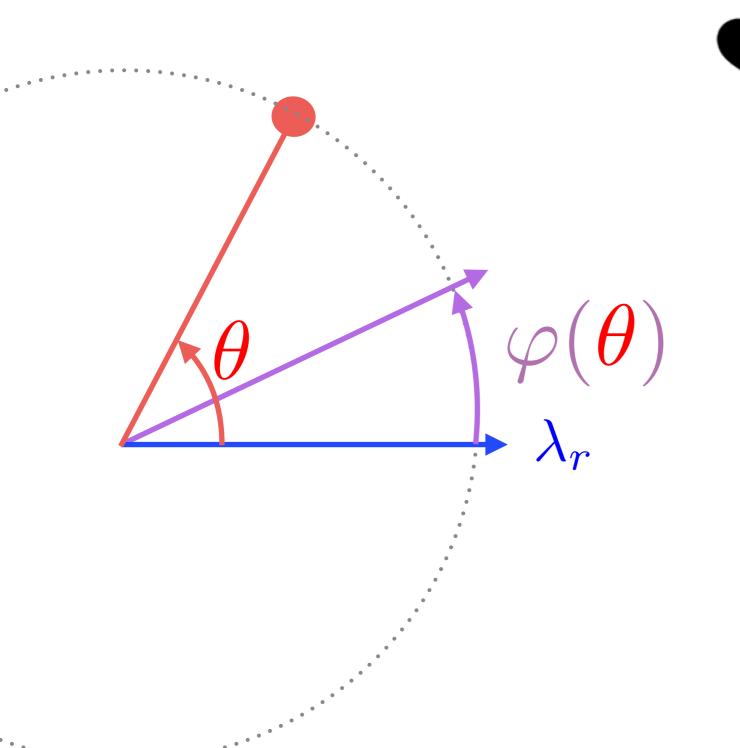




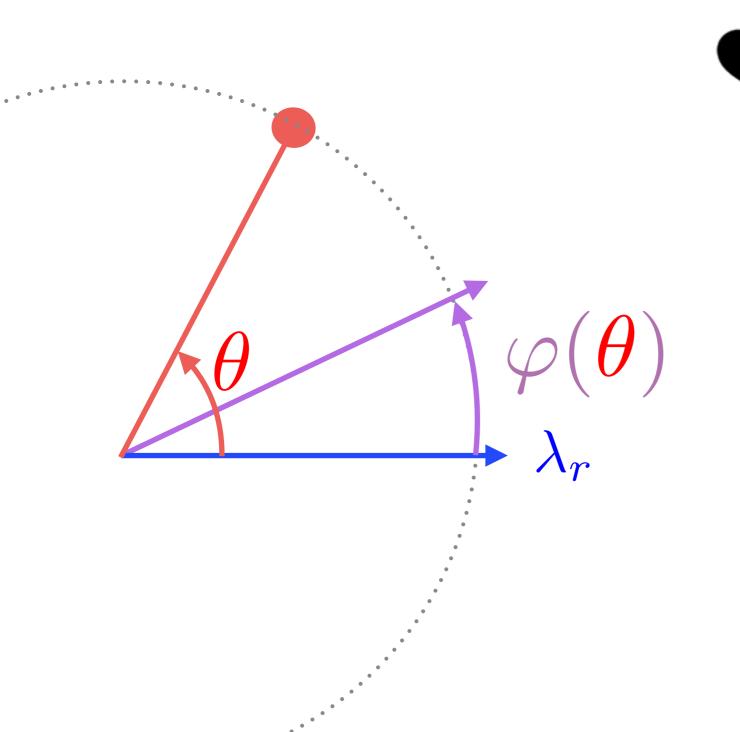








$$\boldsymbol{\theta^{\star}} = \arg \max \varphi(\boldsymbol{\theta})$$



$$\boldsymbol{\theta^{\star}} = \arg \max_{\boldsymbol{\theta}} \varphi(\boldsymbol{\theta})$$

Usual tricks:

- Write in closed form.
- Take derivative.
- Set to zero.
- Solve.

(Easier said than done)

$$\varphi(\theta)$$

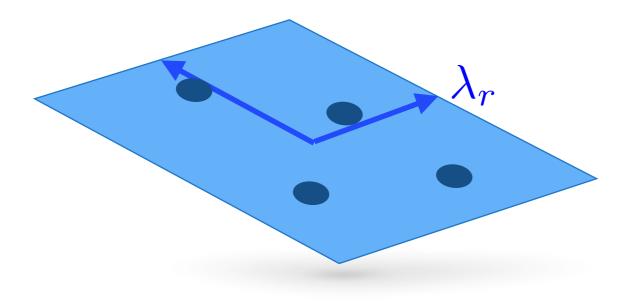
$$\frac{\theta^{\star} = \arg \max \varphi(\theta)}{\theta}$$

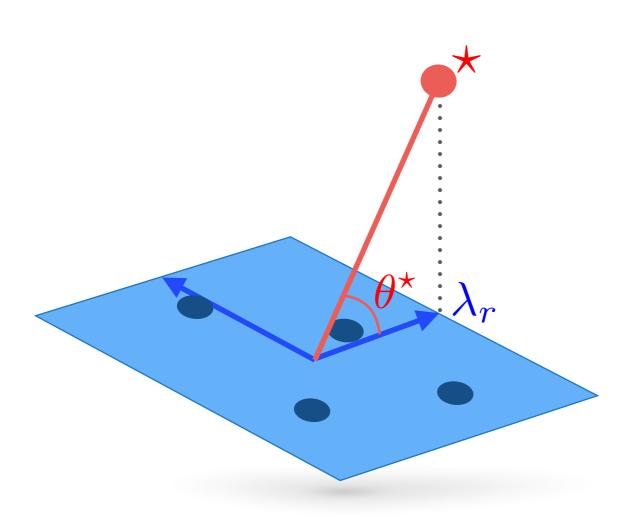
Usual tricks:

- Write in closed form.
- Take derivative.
- Set to zero.
- Solve.

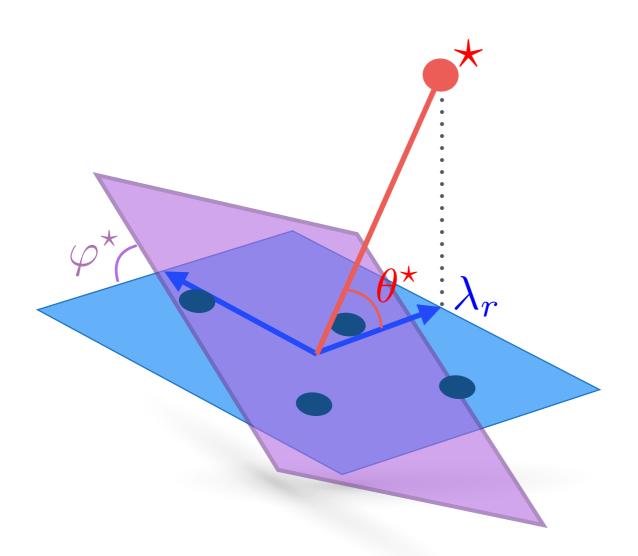
(Easier said than done)

$$\theta^{\star} = \frac{1}{2} \arccos\left(-\frac{1}{\lambda_r^2}\right)$$

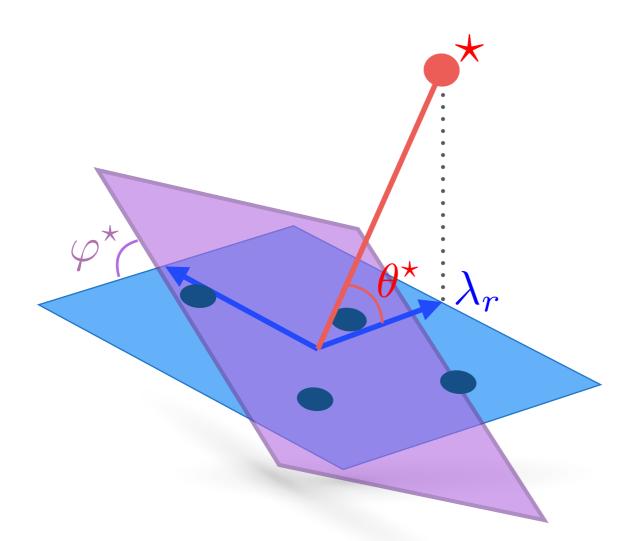




$$\theta^{\star} = \frac{1}{2} \arccos\left(-\frac{1}{\lambda_r^2}\right)$$



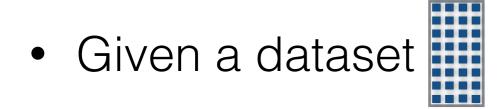
$$\theta^{\star} = \frac{1}{2} \arccos\left(-\frac{1}{\lambda_r^2}\right)$$

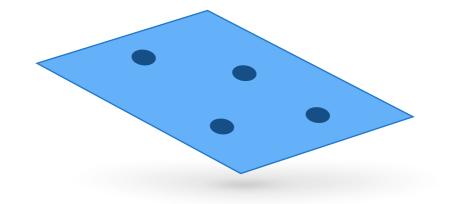


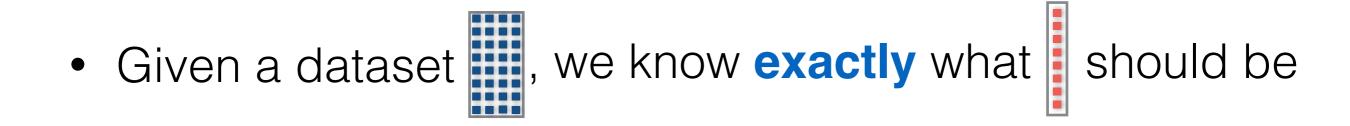
$$\theta^{\star} = \frac{1}{2} \arccos\left(-\frac{1}{\lambda_r^2}\right)$$

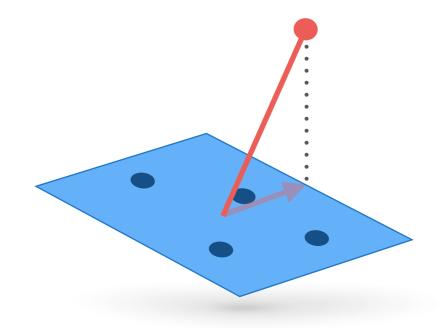
$$\varphi^{\star} = \arccos\left(\frac{\sin^2\theta^{\star} - \sigma_{\star}^2}{\sqrt{(\sin^2\theta^{\star} - \sigma_{\star}^2)^2 + (\sin\theta^{\star}\cos\theta^{\star})^2}}\right)$$

$$\sigma_{\star}^{2} = \frac{(\lambda_{r}^{2}+1) + \sqrt{(\lambda_{r}^{2}+1)^{2} - 4\lambda_{r}^{2}\sin^{2}\theta^{\star}}}{2}.$$

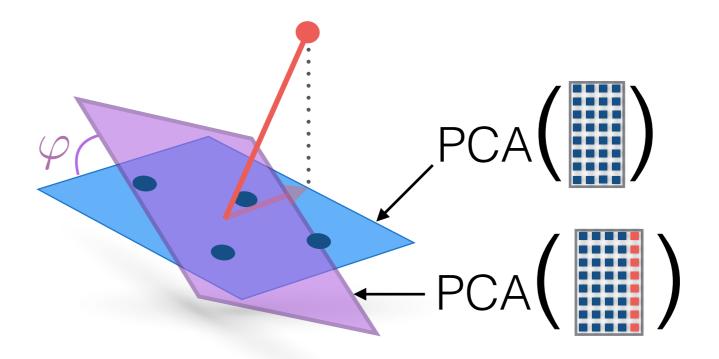




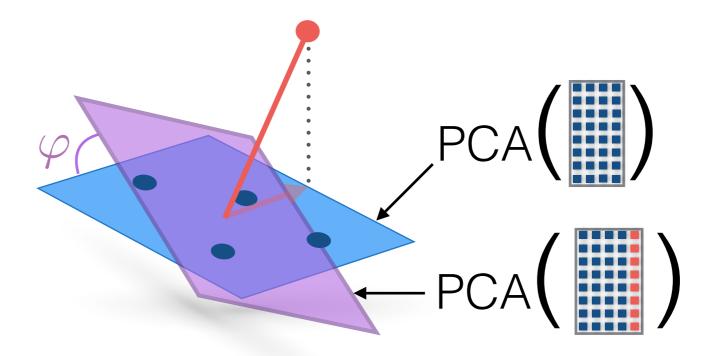




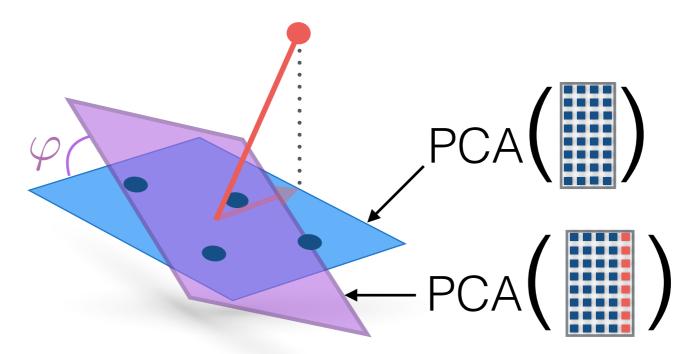
• Given a dataset \mathbf{I} , we know **exactly** what \mathbf{I} should be So that φ is maximal.



• Given a dataset $\mathbf{I}, we know \mathbf{exactly}$ what \mathbf{I} should be So that φ is maximal. (closed form)



• Given a dataset $\square, we know exactly what \square should be So that <math>\varphi$ is maximal. (closed form)



- Info-theory bound: how much one can *tilt* a subspace.
- Error bounds for Subspace Clustering.
- Applications in rank-one updates?
- Other applications?

Dankeschön!