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Rank-One Updates

Given a new point ®, how do
we compute new PCA efficiently?
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Where should we put ® to maximize ¥
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Subspace Clustering

We want to bound the error ¥
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Adversarial PCA

Where should we put ® to maximize ¥
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So that £ is ma>.<.i;;1al. (closed form)

e (3iven a dataset

* |nfo-theory bound: how much one can tilt a subspace.
* Error bounds for Subspace Clustering.

* Applications in rank-one updates?

* Other applications?
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