Leveraging Machine Learning for High-Resolution Restoration of Satellite Imagery

Daniel L. Pimentel-Alarcón, Ashish Tiwari Georgia State University

Douglas A. Hope Hope Scientific Renaissance LLC

Stuart M. Jefferies, Georgia State University Institute for Astronomy, University of Hawaii

Our Results

THE FOLLOWING PREVIEW HAS BEEN APPROVED FOR ALL AUDIENCES

BY THE MOTION PICTURE ASSOCIATION OF AMERICA INC.

THE FILM ADVERTISED HAS BEEN RATED

RESTRICTED

UNDER 17 REQUIRES ACCOMPANYING PARENT OR GUARDIAN

PARTIAL NUDITY & OPTIMIZATION

www.filmratings.com

www.mpaa.org

Really, we have many observations

The Key is: Selecting The Right Frames

Good IN, Good OUT

The Key is: Selecting The Right Frames

Garbage IN, Garbage OUT

How do we Select The Right Frames?

$$x = \sum_{i=1}^{N} \omega_i y_i$$

A Flavor of our Ideas

Write ${\mathfrak X}$ as Sparse Linear Combination of ${\mathfrak Y}_{{
m i}}$'s

A Flavor of our Ideas

Write ${\mathfrak X}$ as Sparse Linear Combination of ${\mathfrak Y}_{{\mathbf i}}$'s

A Flavor of our Ideas

Write ${\mathfrak X}$ as Sparse Linear Combination of ${\mathfrak Y}_{{\mathbf i}}$'s

This Work

RMSE=0.337

State-of-the-Art

RMSE=0.352

Random

RMSE=0.431

The Numbers

Outperforms State-of-the-Art

But wait...

These are NOT even the Good News!

The good news are:

We are Just Scratching the Surface!

The Good News Are...

• This is the "Basic" formulation:

$$\displaystyle \mathop{rg\, \mathrm{min}}_{oldsymbol{\omega} \in \mathbb{R}^{\mathrm{N}}} \|oldsymbol{\omega}\|_{1} \quad \mathrm{subject\ to} \quad oldsymbol{\mathfrak{X}} = \sum_{\mathrm{i}=1}^{\mathrm{N}} \omega_{\mathrm{i}} oldsymbol{\mathcal{Y}}_{\mathrm{i}}$$

We can include:

Outliers

More Regularizers

• Dimensionality Reduction

$$rg \min_{oldsymbol{\omega} \in \mathbb{R}^{\mathrm{N}}} \|oldsymbol{\omega}\|_1 \quad ext{subject to} \quad oldsymbol{\mathfrak{X}} = \sum_{\mathrm{i}=1}^{\mathrm{N}} \omega_{\mathrm{i}} oldsymbol{\mathfrak{Y}} oldsymbol{+} oldsymbol{\mathfrak{S}}$$

$$\underset{oldsymbol{\omega} \in \mathbb{R}^{\mathrm{N}}}{\operatorname{arg\,min}} \ \|oldsymbol{\omega}\|_1 + \lambda \|oldsymbol{\omega}\|_2 \quad \text{subject to} \quad oldsymbol{\mathfrak{X}} = \sum_{\mathrm{i}=1}^{\mathrm{N}} \omega_{\mathrm{i}} oldsymbol{\mathcal{Y}}_{\mathrm{i}}$$

$$\underset{\boldsymbol{\mathfrak{U}},\boldsymbol{\mathfrak{D}},\boldsymbol{\mathfrak{V}}}{\operatorname{arg\,min}} \ \|\boldsymbol{\mathfrak{X}} - \boldsymbol{\boldsymbol{\mathfrak{UDV}}}^\mathsf{T}\|_F$$

The Good News Are...

Extend Machine Learning to Develop A Robust System

The Good News Are...

Extend Machine Learning to Develop A Neural Network

That Learns to Reconstruct

(Deep Learning)

What Else Can We Learn?

Are we Online?

Model, Position, Orientation What is it Observing/Doing?

Mahalo!

pimentel@gsu.edu

https://danielpimentel.github.io