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Introduction

We have lots of data

And we want to analyze it.



Introduction

That’s all very nice, but... often data is missing!

I Example: Vision.

Image: Hopkins 155 Dataset
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datasets
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How?

Data is often well-modeled by linear subspaces.

I Linear Algebra is one of our favorite tools.
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How?

Data is often well-modeled by linear subspaces.

I Linear Algebra is one of our favorite tools.

I We want to extend linear algebra to incomplete datasets.
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2 8 2 6 6 2 4 2 4 2
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Low-Rank Matrix Completion

Low-Rank Matrix Completion:

I Given a subset of entries in a rank-r matrix, exactly recover
all of the missing entries.

XΩ =


1 · 3 ·
1 2 · ·
· 2 3 ·
· · · 4
· · · 4

 ⇒ X =


1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4



I ∼ Identifying the subspace spanned by the columns, S?. Here

S? = span


1
1
1
1
1

 .
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Low-Rank Matrix Completion

Notation

I Ω will indicate the observed entries:

XΩ =


1 · 3 ·
1 2 · ·
· 2 3 ·
· · · 4
· · · 4

 Ω =


1 0 1 0
1 1 0 0
0 1 1 0
0 0 0 1
0 0 0 1





Low-Rank Matrix Completion

Existing theory (e.g. Candès and Recht, ’09):

I Under some conditions on Ω (e.g., uniform sampling):

If the columns of X lie in an r-dimensional subspace S?

⇓
S? is the only r-dimensional subspace that agrees with XΩ.
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Low-Rank Matrix Completion

In practice, we hardly ever know whether our matrix lies in a
subspace.
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Low-Rank Matrix Completion

We need to turn things around:

I Say I have an incomplete matrix XΩ.

I Say I find an r-dimensional subspace S that agrees with XΩ.

I Is X truly in S?
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Low-Rank Matrix Completion

We need a converse to LRMC:

I Under some conditions on Ω:

If there is an r-dimensional subspace S that agrees with XΩ

⇓
The columns of X truly lie in S.
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Why worry about this?
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I (Pretty bad secondary effect!)



So, is there really a subspace?

I We needed to know when will a set XΩ of incomplete vectors
define a subspace.

I What are the conditions on Ω?



What am I telling you?

Is there really

a subspace?

Matrix

Completion
Goal: Analyze

Incomplete Data
How? Finding

Subspaces



What am I telling you?

Is there really

a subspace?

Matrix

Completion
Goal: Analyze

Incomplete Data
How? Finding

Subspaces

The

Answer



The Answer

Notation

I For any matrix Ω′ formed with a subset of the columns in Ω:

Ω′ =


1 0
1 1
0 1
0 0


︸ ︷︷ ︸

n(Ω′) := #columns

m(Ω′) := #nonzero rows

I Assume without loss of generality:
I Ω has r + 1 nonzero entries per column.
I Ω has r(d− r) columns.



The Answer

Technical detail (so there are no secrets between us):

X = U?︸︷︷︸
d×k

Θ?︸︷︷︸
k×N

.

I νG = Uniform measure on Gr(k,Rd).

I νΘ = Lebesgue measure on Rk×N .

I Our results hold almost surely w.r.t. product measure
νG × νΘ.



The Answer

Theorem (P.-A., Boston, Nowak (Allerton ’15))

For almost every X, at most finitely many r-dimensional
subspaces can agree with XΩ if and only if every matrix Ω′

formed with a subset of the columns in Ω satisfies

m(Ω′) ≥ n(Ω′)/r + r.
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The Answer

For almost every X, at most finitely many r-dimensional subspaces can agree with
XΩ if and only if every matrix Ω′ formed with a subset of the columns in Ω satisfies

m(Ω′) ≥ n(Ω′)/r + r.

There is a set of measure zero of bad matrices for which this
theorem does not apply.

X =


0 0 0
0 0 0
0 0 0
1 0 0

 XΩ =


0 · ·
0 0 ·
· 0 0
· · 0





The Answer

For almost every X, at most finitely many r-dimensional subspaces can agree with
XΩ if and only if every matrix Ω′ formed with a subset of the columns in Ω satisfies

m(Ω′) ≥ n(Ω′)/r + r.

This is the answer!

Every subset of n columns of Ω has at least n/r + r nonzero rows.

Ω =


1 1 1
1 0 0
0 1 0
0 0 1

 ⇒ Check:


1
1
0
0

 ,


1
0
1
0

 ,


1
0
0
1

 ,


1 1
1 0
0 1
0 0

 ,


1 1
1 0
0 0
0 1

 ,


1 1
0 0
1 0
0 1

 ,


1 1 1
1 0 0
0 1 0
0 0 1





The answer

Now we know when there are at most finitely many completions.

I Then what?

I Just a few additional entries give us the converse we were
looking for.



The Answer

Theorem (P.-A., Boston, Nowak (Allerton ’15))

Suppose XΩ has an additional (d− r) columns observed on
Ω̂, such that every matrix Ω′ formed with a subset of the
columns in Ω̂ satisfies

m(Ω′) ≥ n(Ω′) + r.

If there is an r-dimensional subspace S that agrees with XΩ

⇓
The columns of X truly lie in S.
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Idea of the proof

A column with r + 1 samples imposes one restriction on what S?

may be.

XΩ =


xω1

·
1
1



I A subspace S agrees with xω1 ⇐⇒ f1(S) = 0︸ ︷︷ ︸
degree-r polynomial

.



Idea of the proof

More precisely:

I Take a basis of S:

S = span

 U

︸ ︷︷ ︸
r


 d.

I Then xωi ∈ S is equivalent to:

r + 1


xωi

 =

Uωi

θi.



Idea of the proof

I We can split this as:

r


1
{
x∆i

x∇i

 =

 U∆i

U∇i

θi.
I We can use the top block to solve for θi:

θi = U−1
∆i

x∆i .

I Plug this in the last row:

x∇i = U∇iU
−1
∆i

x∆i .

I Or equivalently

x∇i −U∇iU
−1
∆i

x∆i︸ ︷︷ ︸
fi(Uωi |xωi )

= 0.



Idea of the proof

An other column with r + 1 samples imposes an other restriction.

XΩ =


xω2

2
2
·



I A subspace S agrees with xω2 ⇐⇒ f2(Uω2 |xω2) = 0.



Idea of the proof

Each column with r + 1 samples imposes one restriction.

XΩ =


xω1 xω2

· 2
1 2
1 ·



I A subspace S agrees with XΩ ⇐⇒
{
f1(Uω1 |xω1) = 0
f2(Uω2 |xω2) = 0

.



Idea of the proof

I We thus obtain a set of polynomials:

f1, f2, . . . , fN .

I U has r(d− r) degrees of freedom:

U =


I

V


}
r d− r.

I We want r(d− r) algebraically independent polynomials.



Idea of the proof

I Recall:

Ω′ =


1 0
1 1
0 1
0 0


︸ ︷︷ ︸

n(Ω′) := #columns

m(Ω′) := #nonzero rows

I fi(Uωi |xωi) only involves the variables corresponding to the
nonzero rows of ωi.

I F′(UΩ′ |XΩ′) = subset of polynomials corresponding to Ω′:

I n(Ω′) polynomials.

I r(m(Ω′)− r) variables.
U =


I

V


}
r}
m(Ω′)− r



Idea of the proof

There is a subspace that agrees with XΩ

⇓
F′(UΩ′ |XΩ′) = 0 has at least one solution.

I If

n(Ω′)︸ ︷︷ ︸
equations

> r(m(Ω′)− r)︸ ︷︷ ︸
unknowns

⇒ Polynomials are dependent.

I (That is the easy direction)



Idea of the proof

I Our results hold a.s. w.r.t.

νG︸︷︷︸
Uniform on Gr(k,Rd)

× νΘ︸︷︷︸
Lebesgue on Rk×N

.

I ∃ Bijection between dense open subset of Gr(k,Rd) and
R(d−k)×k via

S = span

[
I
V

]
}k
}d− k

I Our results hold a.s. w.r.t.

νV︸︷︷︸
Lebesgue on R(d−k)×k

× νΘ︸︷︷︸
Lebesgue on Rk×N

.



Idea of the proof

Recall:

X = U?Θ? =

[
I

V?

]
︸ ︷︷ ︸
d×k

Θ?︸︷︷︸
k×N

⇒ F′(UΩ′ |XΩ′) = F′(UΩ′ |V?
Ω′ ,Θ

?).

I The elements of V?
Ω′ ,Θ

? are generic real numbers.



Idea of the proof

I For a.e. (V?,Θ), if

n(Ω′)︸ ︷︷ ︸
equations

≤ r(m(Ω′)− r)︸ ︷︷ ︸
unknowns

∀ Ω′ ⊂ Ω

⇒ Polynomials are a algebraically independent.

After this, deep algebraic geometry results do the heavy lifting:

⇒ Polynomials are a regular sequence.

⇒ Polynomials define a zero-dimensional variety.

⇒ At most finitely many solutions (subspaces) will agree with
XΩ.
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I For a.e. (V?,Θ), if

n(Ω′)︸ ︷︷ ︸
equations

≤ r(m(Ω′)− r)︸ ︷︷ ︸
unknowns

∀ Ω′ ⊂ Ω

⇒ Polynomials are a algebraically independent.

After this, deep algebraic geometry results do the heavy lifting:

⇒ Polynomials are a regular sequence.

⇒ Polynomials define a zero-dimensional variety.

⇒ At most finitely many solutions (subspaces) will agree with
XΩ.
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Idea of the proof

We need a few additional checksum polynomials (consistency
check):



Idea of the proof

Full-data case:

I How can I know if X truly
lies in S?

I With one generic column
(consistency check):



What do I mean generic?



Idea of the proof

Full-data case:

I How can I know if X truly
lies in S?

I With one generic column
(consistency check):


x

1
1
1


I x ∈ S ⇐⇒ S = S?.



Idea of the proof

Missing-data case:

I Something similar:


xω

1
1
·


I xω ∈ S ⇐⇒ Sω = S?

ω.



Idea of the proof

So the question is:

I If Sωi = S?
ωi

for every i...

I Can we guarantee that
S = S??



Idea of the proof

Suppose I don’t tell you S?... but I give you a set of canonical
projections of S?.



Idea of the proof

Suppose I don’t tell you S?...but I give you a set of canonical
projections of S?.

Can you uniquely determine S? from this set of projections?



Idea of the proof

Well... sometimes you can, sometimes you can’t.

We characterized when you can, and when you can’t.



Idea of the proof

The columns of Ω̂ will index the given projections.

Ω̂ =


ω1 ω2

1 0
1 1
0 1



I Assume without loss of generality:
I Ω̂ has r + 1 nonzero entries per column.
I Ω̂ has d− r + 1 columns.



Idea of the proof

Theorem (P.-A., Boston, Nowak, ISIT ’15)

For almost every S?, S? is the only subspace that agrees with
the given projections if every matrix Ω′ formed with a proper
subset of the columns in Ω̂ satisfies

m(Ω′) ≥ n(Ω′) + r.
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The Answer in Words

If a matrix does not satisfy our sampling conditions, then you
cannot find its subspace.

XΩ =


1 · 3 ·
1 2 · ·
· 2 3 ·
· · · 4
· · · 4





The Answer in Words

If a matrix satisfies our sampling conditions, then you can find its
subspace up to finite choice.

XΩ =


1 1 3 ·
1 2 · 1
3 · 5 4
· 7 6 5


Sometimes finite choice = unique choice (e.g., rank= 1), but
sometimes not.



The Answer in Words

With just a few additional samples we can make sure that

I X really is in an subspace.

I You found the right subspace.

XΩ =


1 1 3 · −1 1
1 2 · 1 · −1
3 · 5 4 3 ·
· 7 6 5 5 −2





The Big Picture

Verify there is

truly a subspace

Uniquely define

a subspace

Full

data

Missing

data
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Implications on LRMC

I P.-A., Boston, Nowak (Allerton ’15):
I For almost every matrix, O(max{r, log d}) uniform random

entries per column are sufficient for completion.

I Regardless of coherence! (at least theoretically)

I But coherence seems to come at a price in practice
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Implications on LRMC

Validation criteria:

I Suppose you observe the right entries.

I Try to complete the matrix using any method.

I If you find a rank-r completion, then it is the right completion.

I In lieu of coherence assumptions.

I In lieu of uniform sampling assumptions.

I With probability 1 (as opposed to with high probability).



Implications

I Our results tell us exactly which entries to observe.
I We can now design Adaptive LRMC Algorithms.



Implications

Help answer an important open question:

I The Sample Complexity of Subspace Clustering with Missing
Data.
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Long Story Short
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Conclusions

Now we know:

Verify there is

truly a subspace

Uniquely define

a subspace

Full

data

Missing

data

This has important implications on:

I LRMC.

I SCMD.

I Adaptive strategies

I Related problems.




