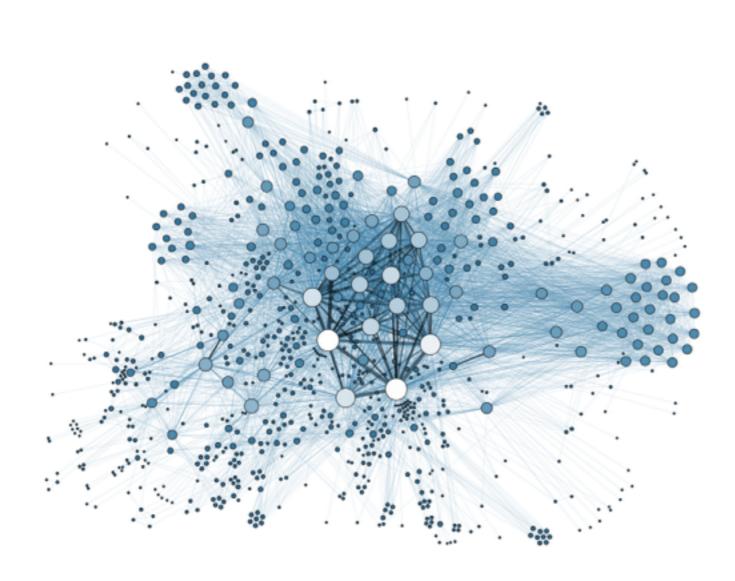
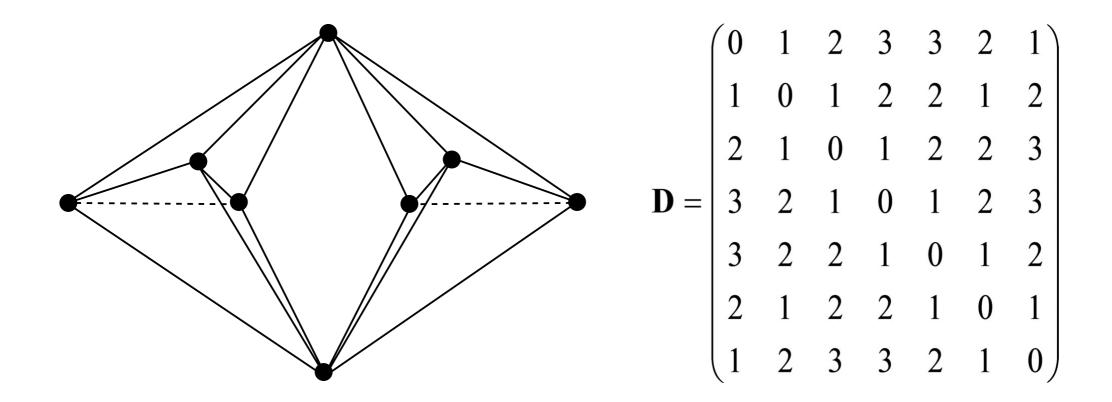
A Converse to Low-Rank Matrix Completion

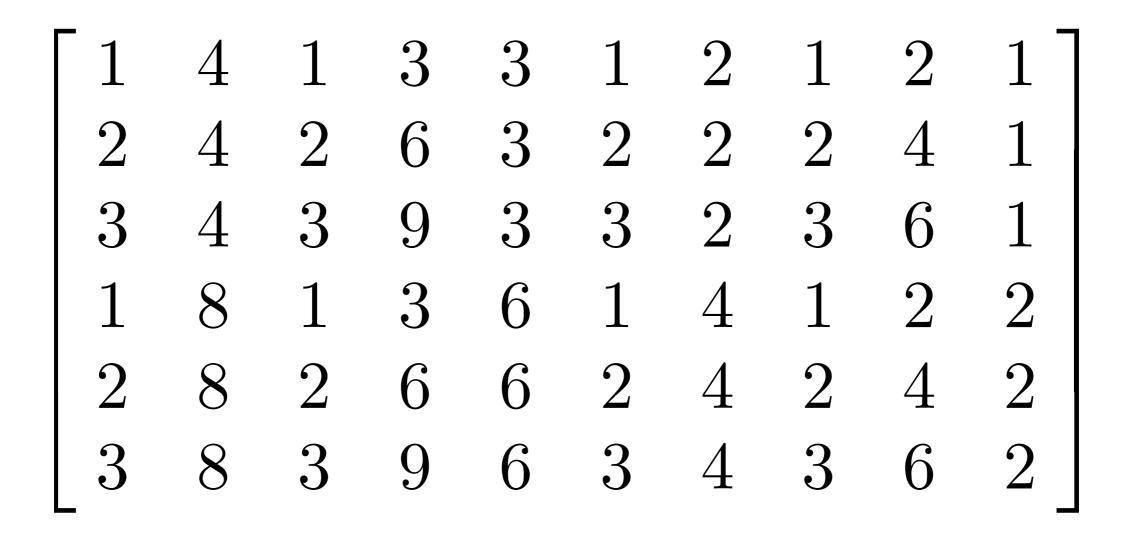
Daniel Pimentel-Alarcón & Robert Nowak University of Wisconsin-Madison



Low-Rank Matrices are all around!

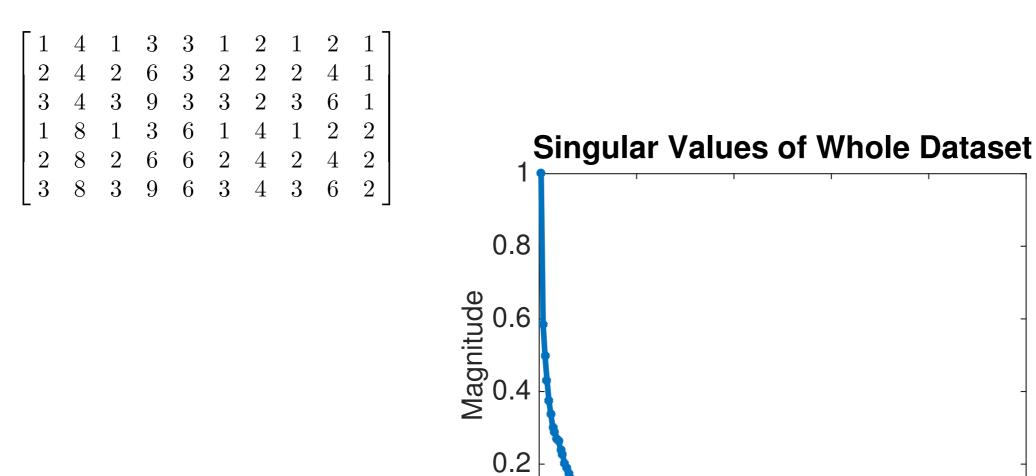


Sometimes we KNOW



But in General

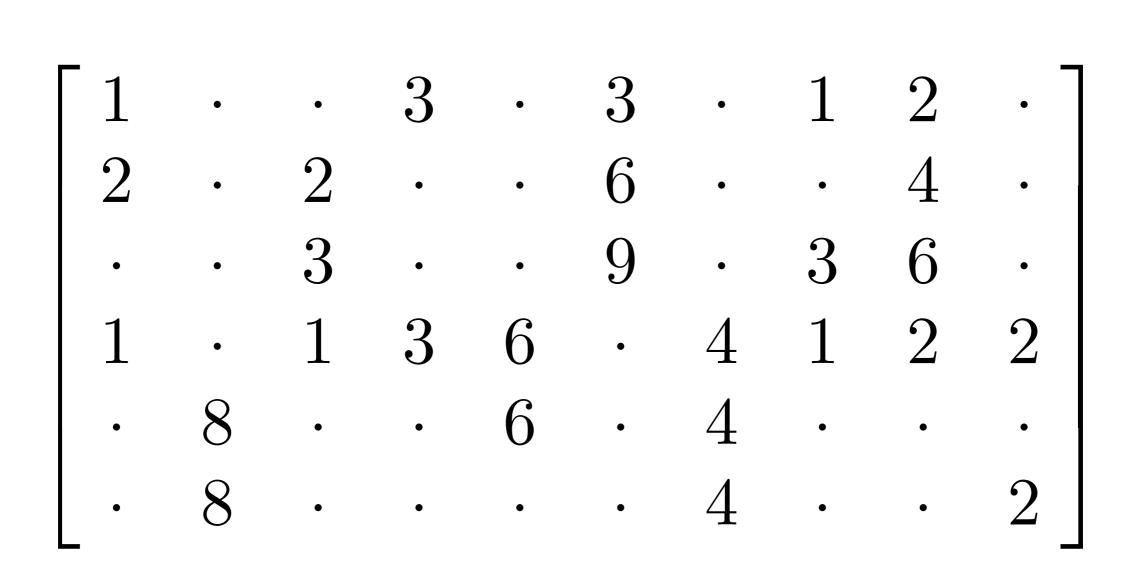
We just have a data matrix that we want to analyze



But in General

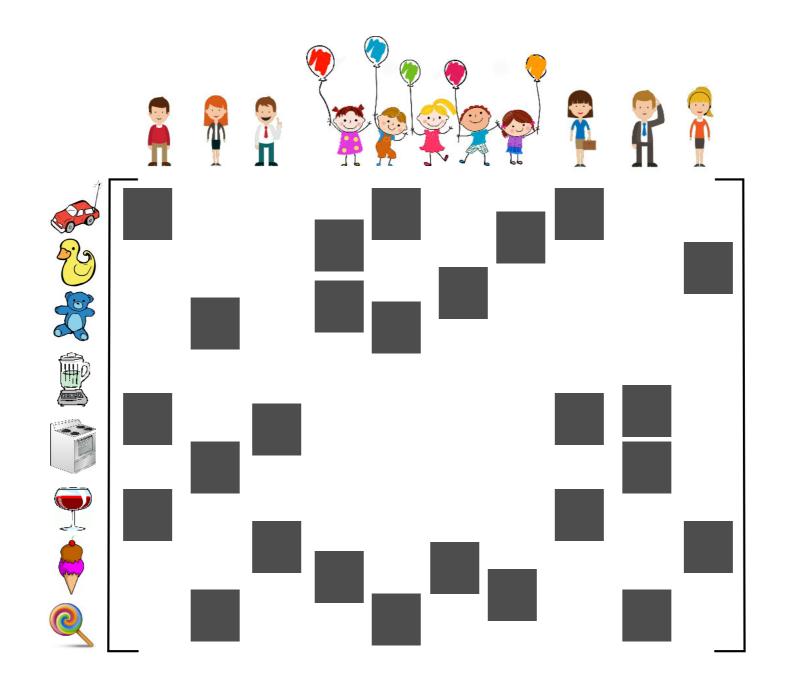
Singular Values

We just have a data matrix that we want to analyze Typically we use SVD



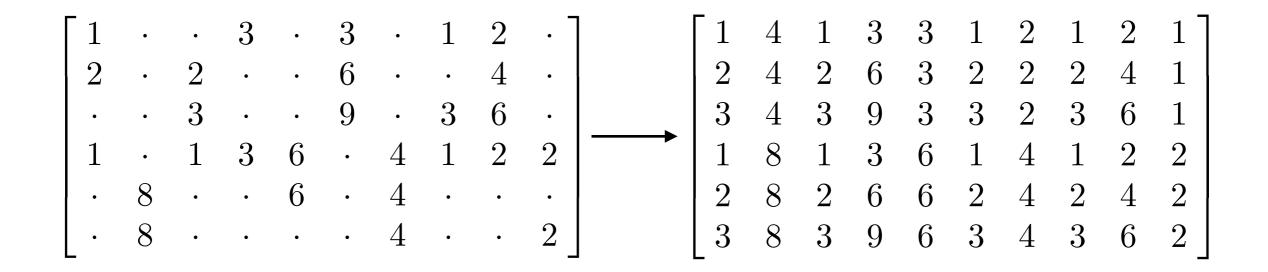
But if Data is Missing

We CANNOT use SVD!



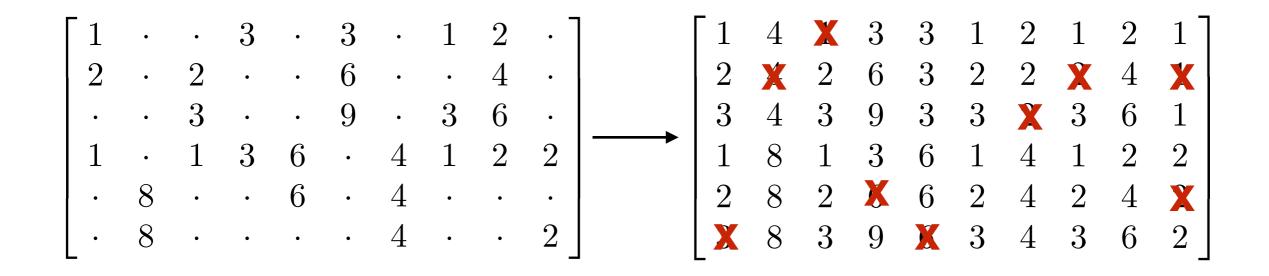
Sometimes we HOPE

Just because we can find a rank-r completion



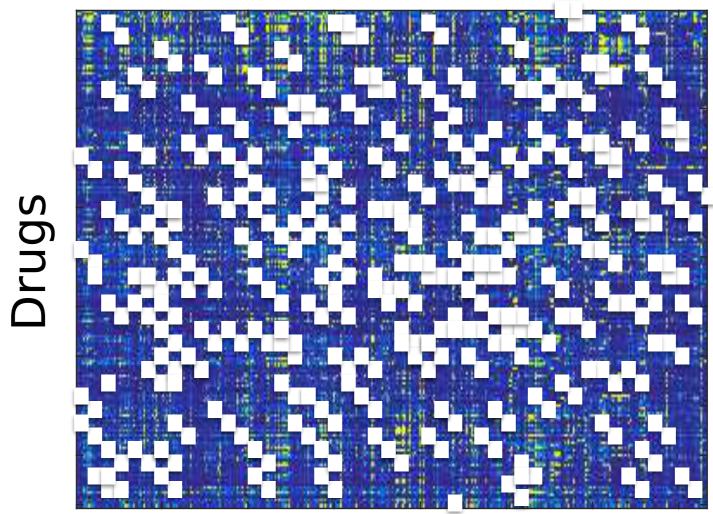
Doesn't mean the full matrix was rank-r

Just because we can find a rank-r completion

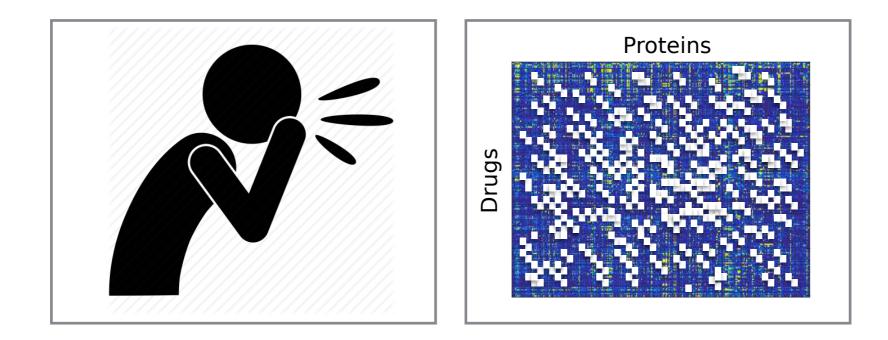


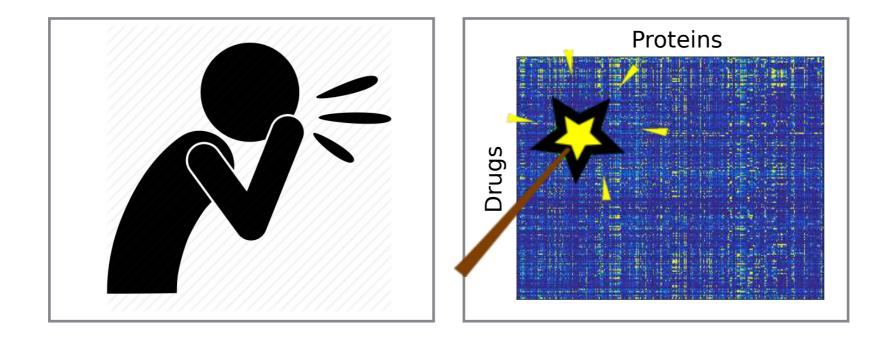
Doesn't mean the full matrix was rank-r

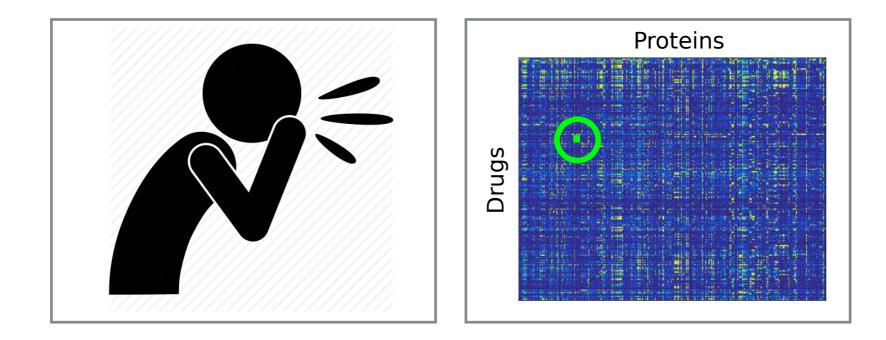
Proteins

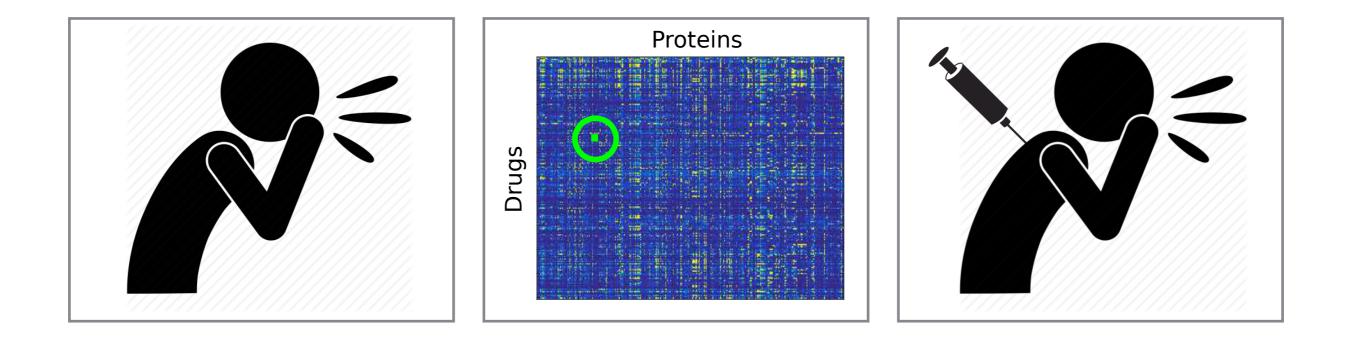


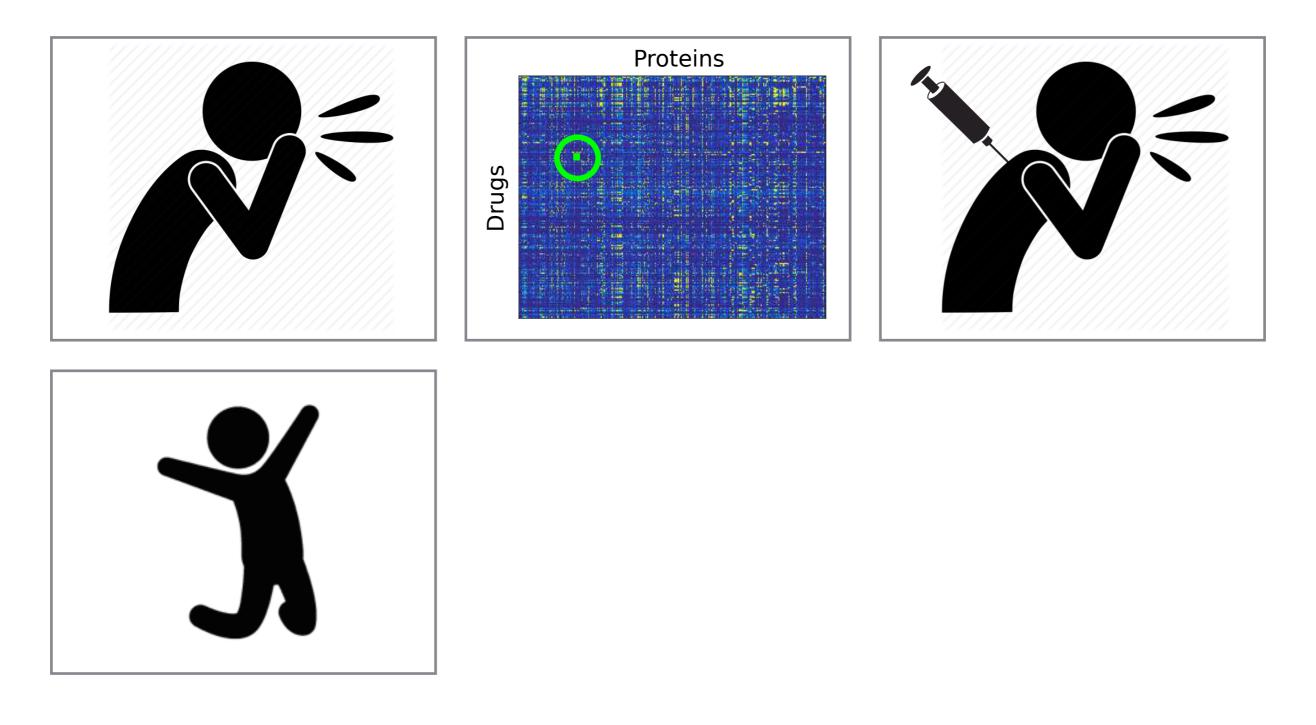
Sometimes, we better MAKE SURE!

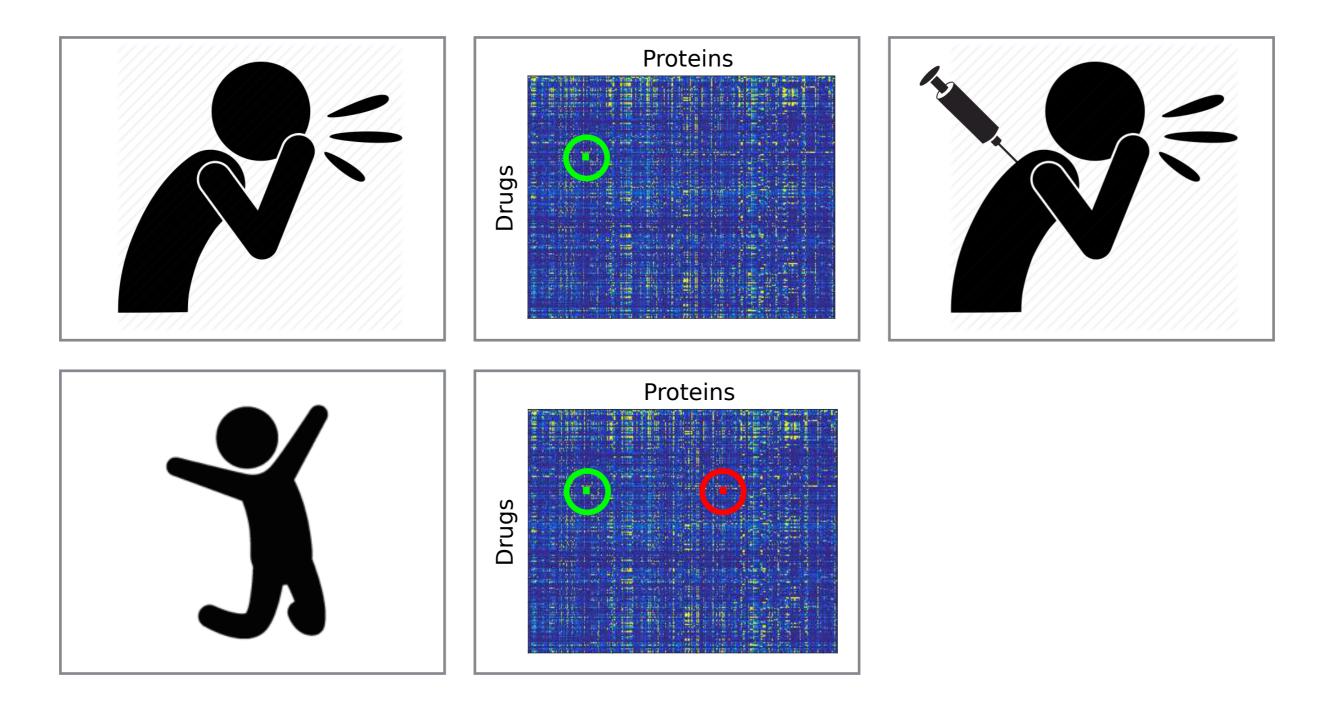


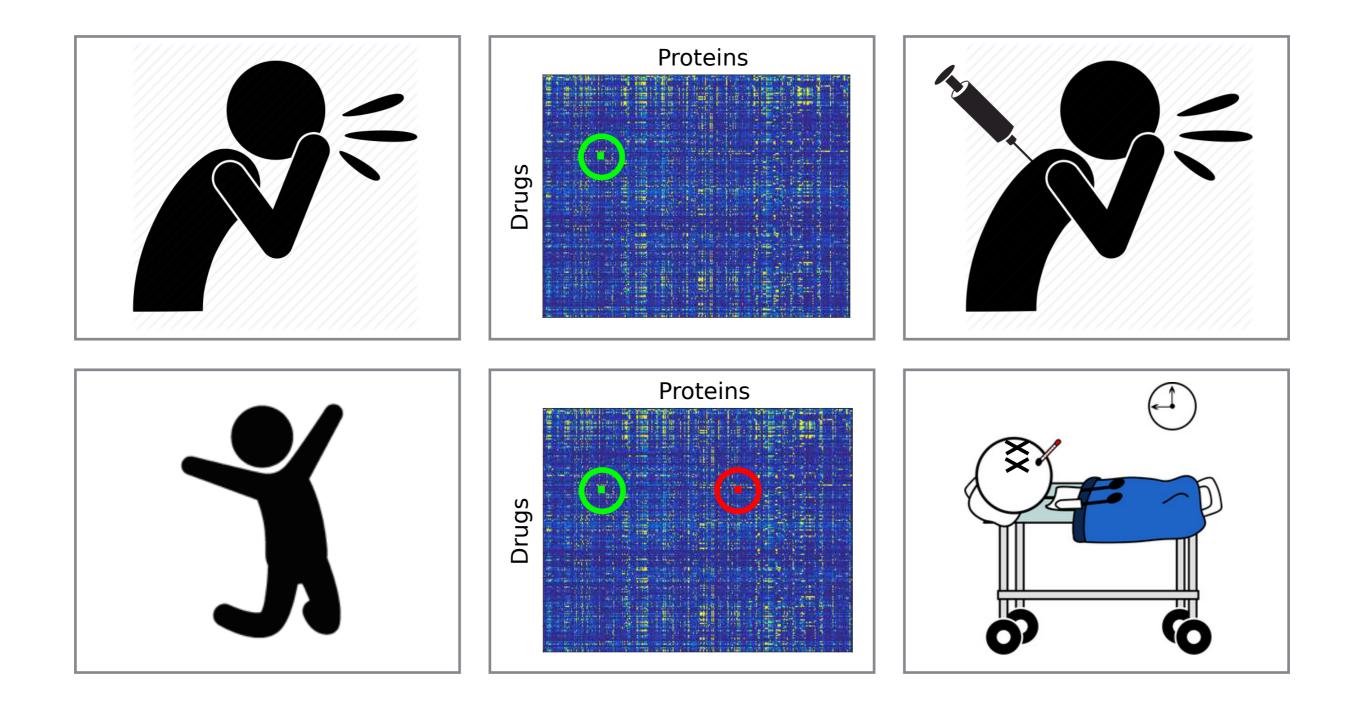




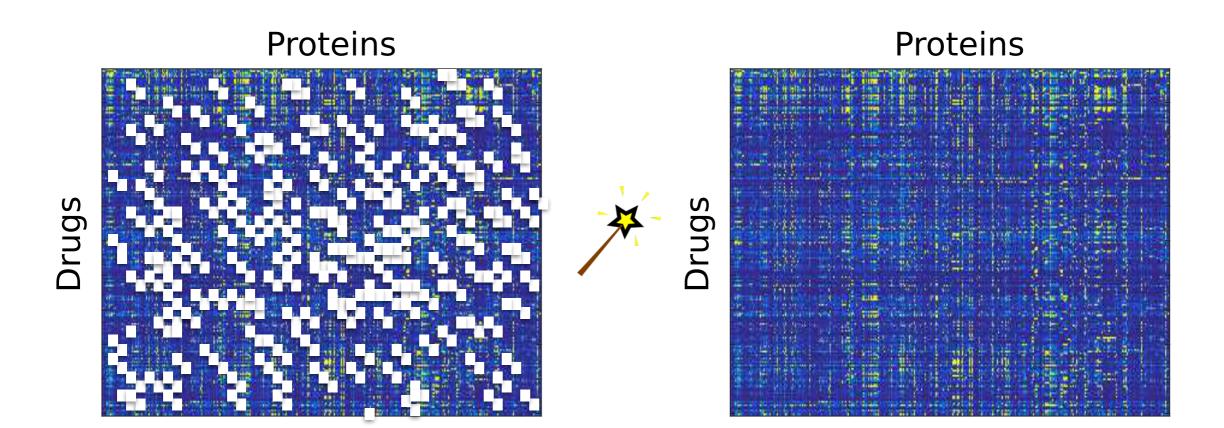




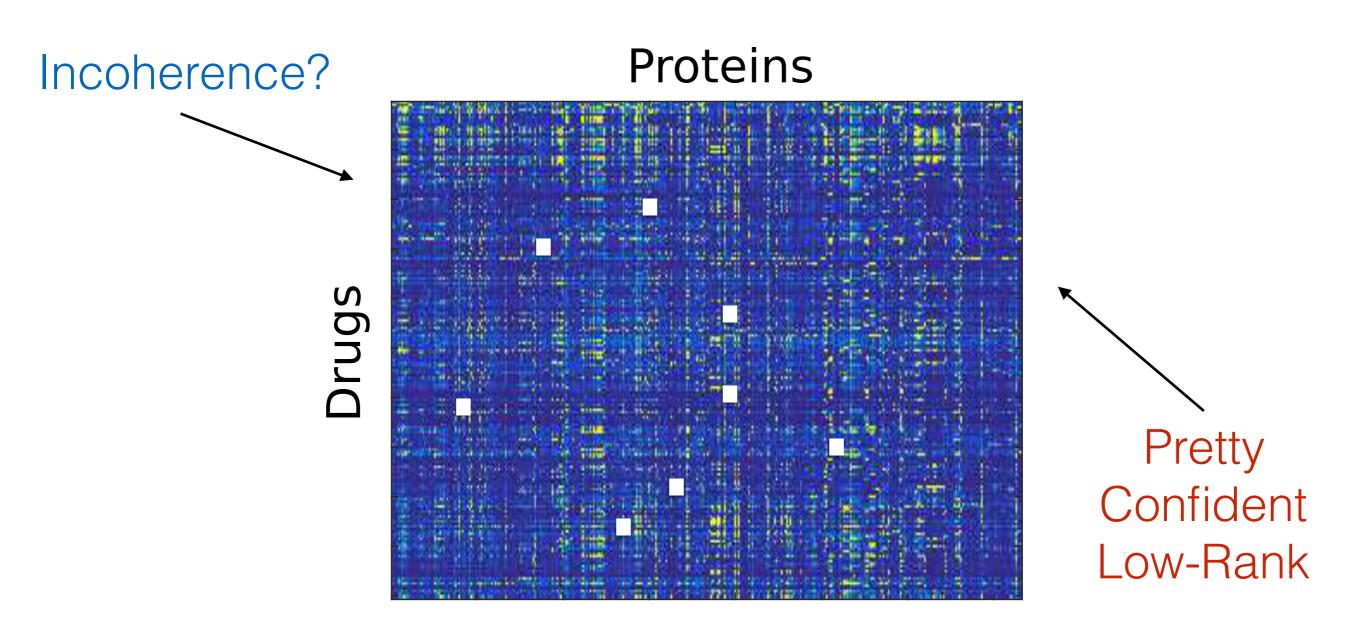


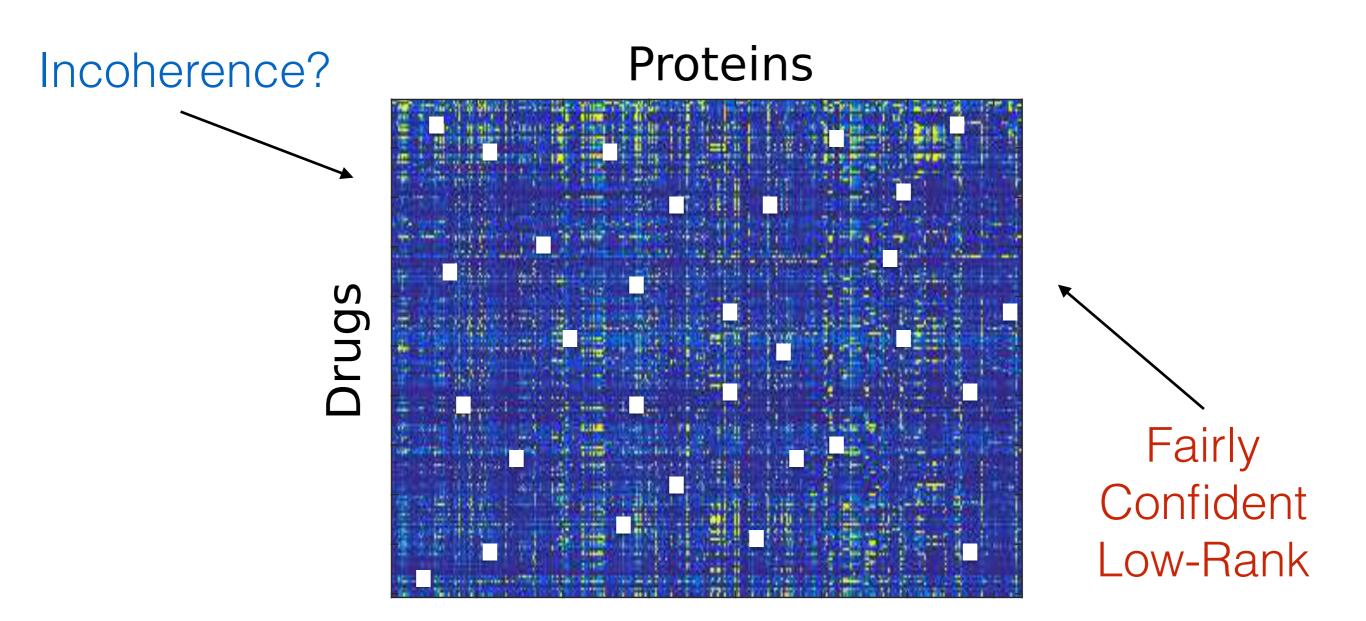


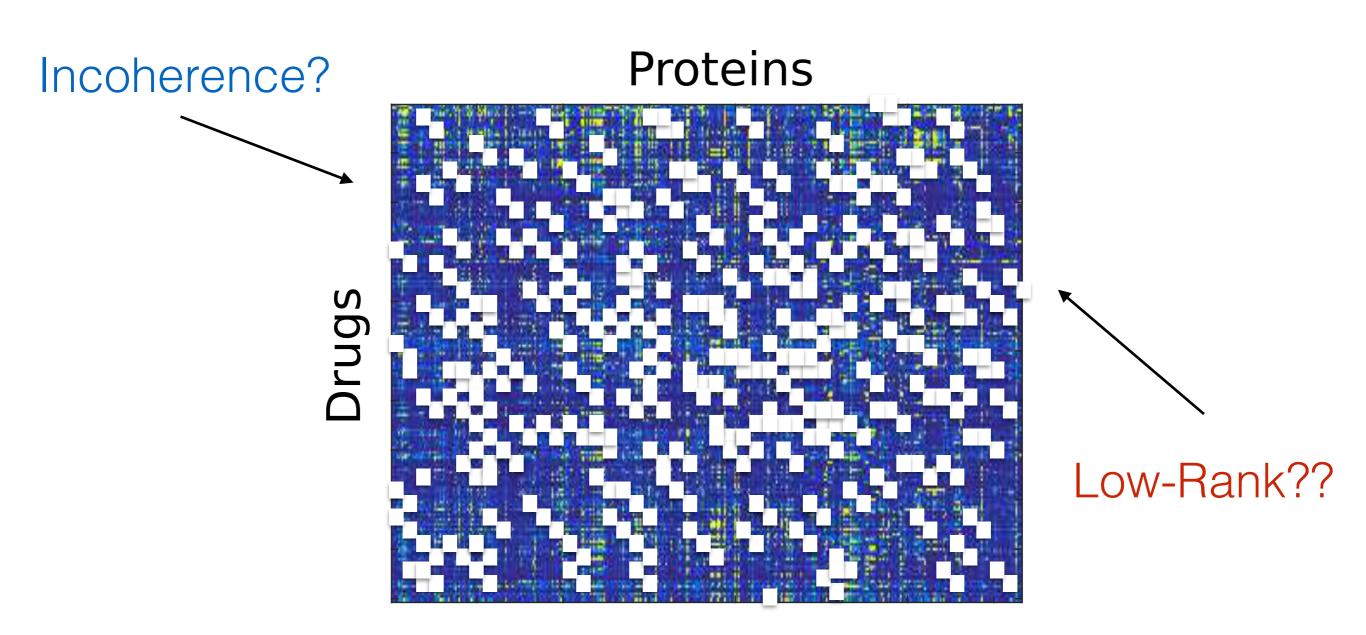
Say I find a rank-r completion.



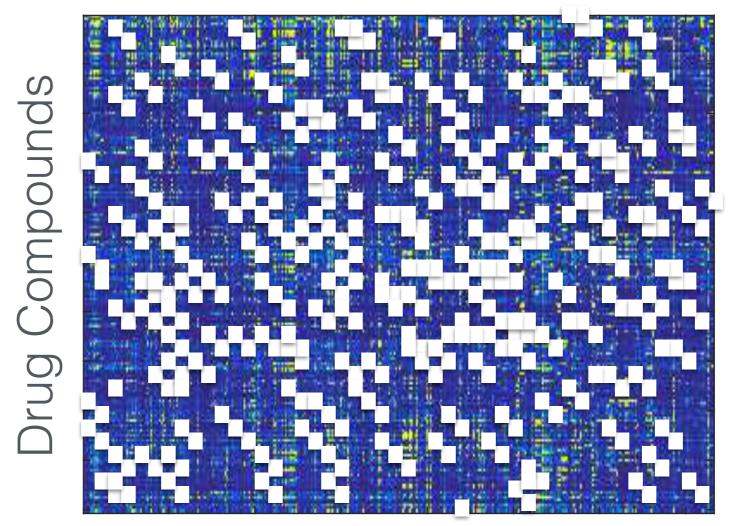
How can I know that full-matrix was indeed low-rank?

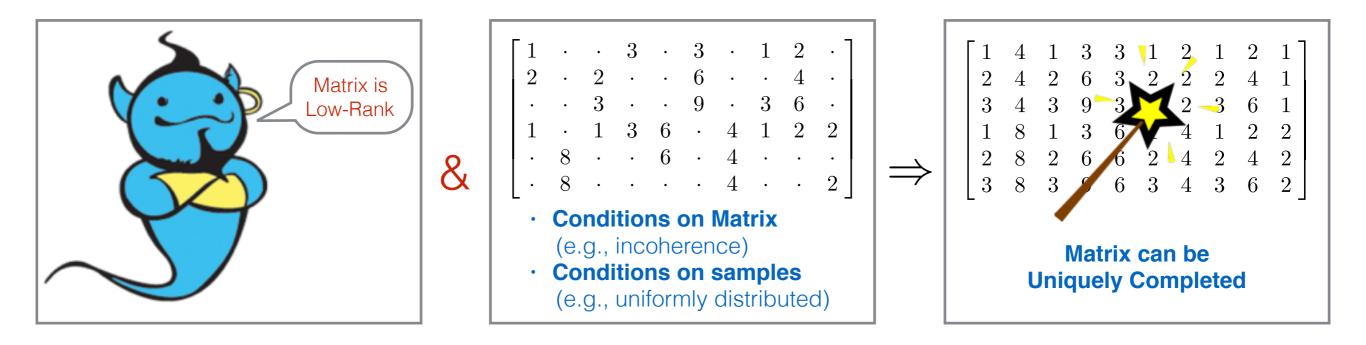




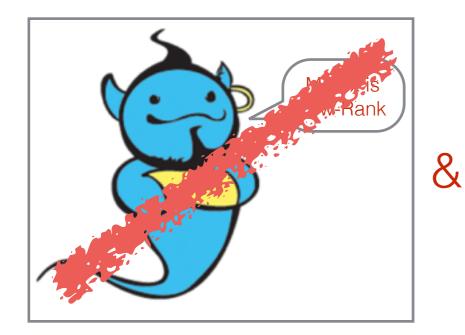


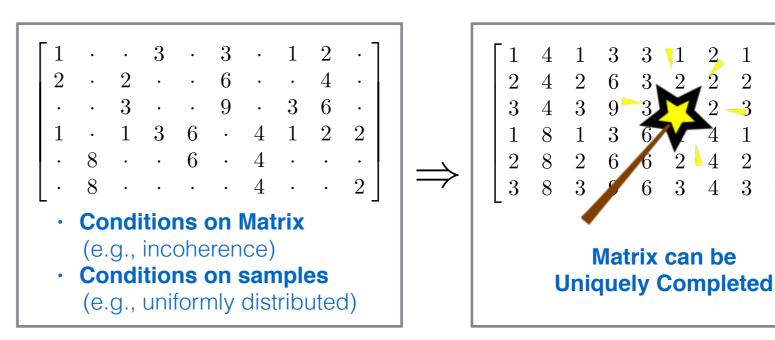
Targets (proteins)



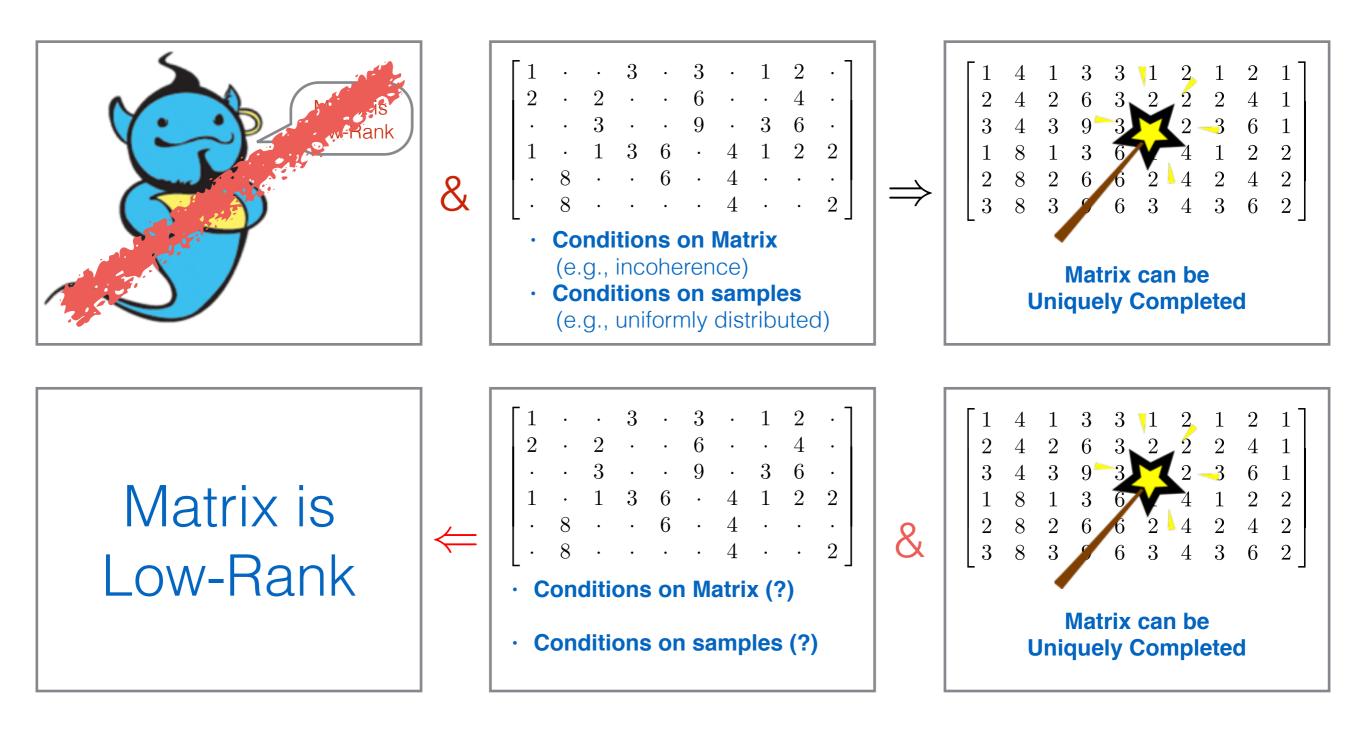


Existing Theory

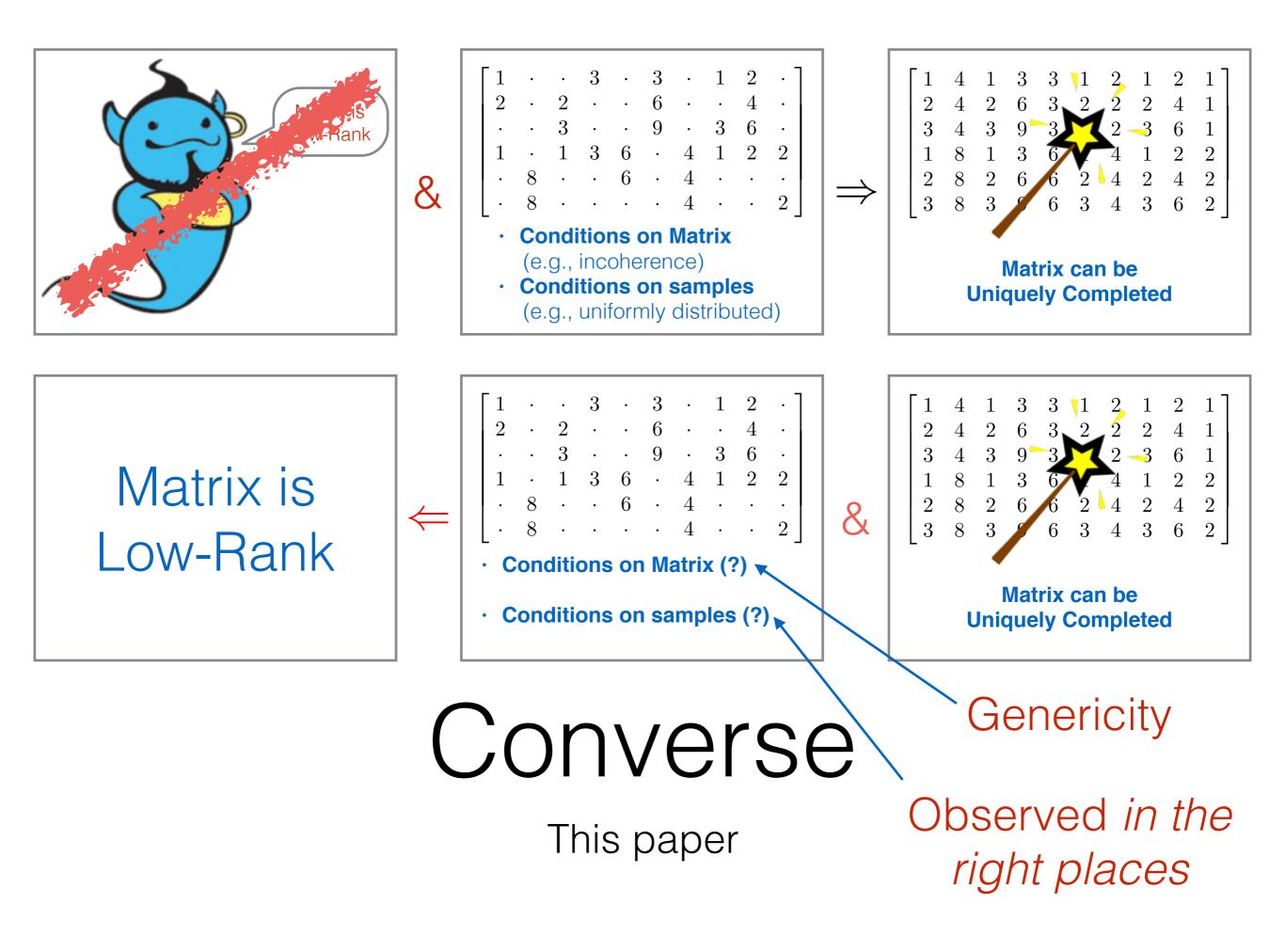


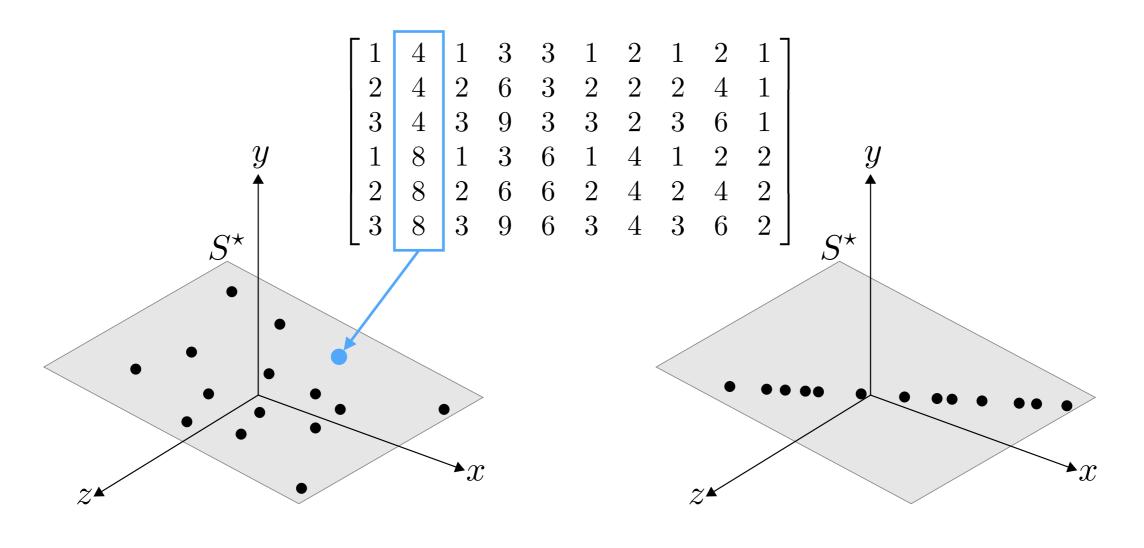


Existing Theory



Converse





Good

Bad

Genericity

What do I mean?

 \mathbf{X}_{Ω} contains a column, in addition to r disjoint matrices $\{\mathbf{X}_{\Omega}^{\tau}\}_{\tau=1}^{r}$, each of size $d \times (d-r)$, such that for every τ ,

• Every matrix X'_{Ω} formed with a subset of the columns in X^{τ}_{Ω} satisfies

 $\#rowsWithObservations(\mathbf{X}'_{\Omega}) \geq \#columns(\mathbf{X}'_{\Omega}) + r.$

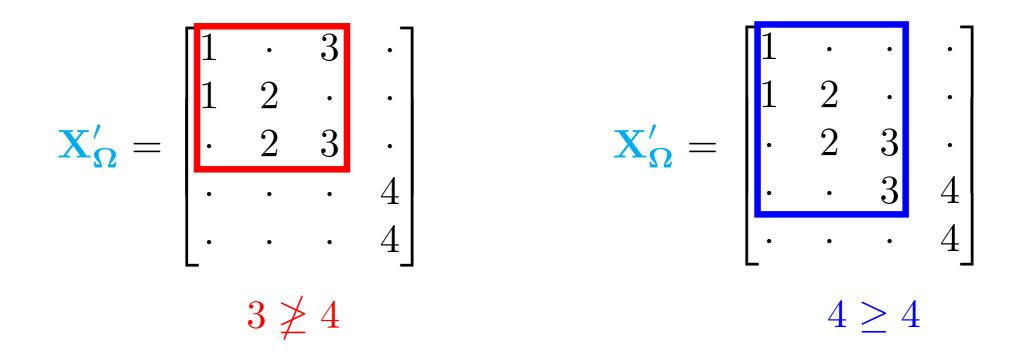
Observed in the right places

What do I mean?

 \mathbf{X}_{Ω} contains a column, in addition to r disjoint matrices $\{\mathbf{X}_{\Omega}^{\tau}\}_{\tau=1}^{r}$, each of size $d \times (d-r)$, such that for every τ ,

• Every matrix \mathbf{X}'_{Ω} formed with a subset of the columns in $\mathbf{X}^{\tau}_{\Omega}$ satisfies

 $\#rowsWithObservations(\mathbf{X}'_{\Omega}) \geq \#columns(\mathbf{X}'_{\Omega}) + r.$



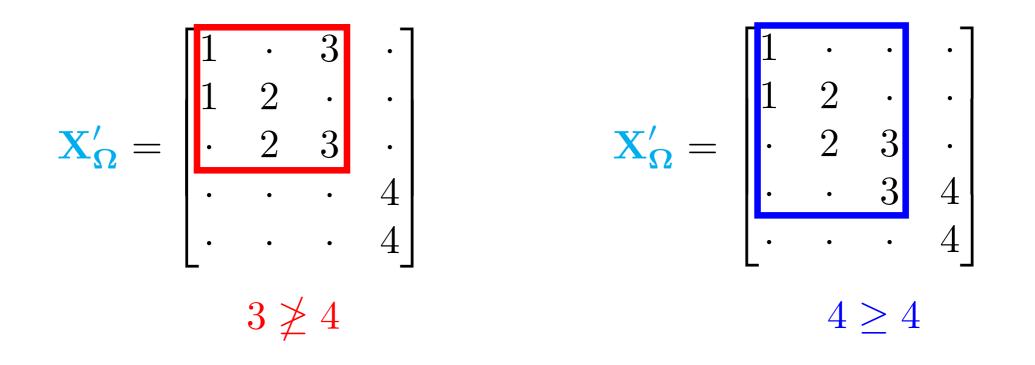
Observed in the right places

What do I mean?

 \mathbf{X}_{Ω} contains a column, in addition to r disjoint matrices $\{\mathbf{X}_{\Omega}^{\tau}\}_{\tau=1}^{r}$, each of size $d \times (d-r)$, such that for every τ ,

• Every matrix \mathbf{X}'_{Ω} formed with a subset of the columns in $\mathbf{X}^{\tau}_{\Omega}$ satisfies

 $\#rowsWithObservations(\mathbf{X}'_{\Omega}) \geq \#columns(\mathbf{X}'_{\Omega}) + r.$



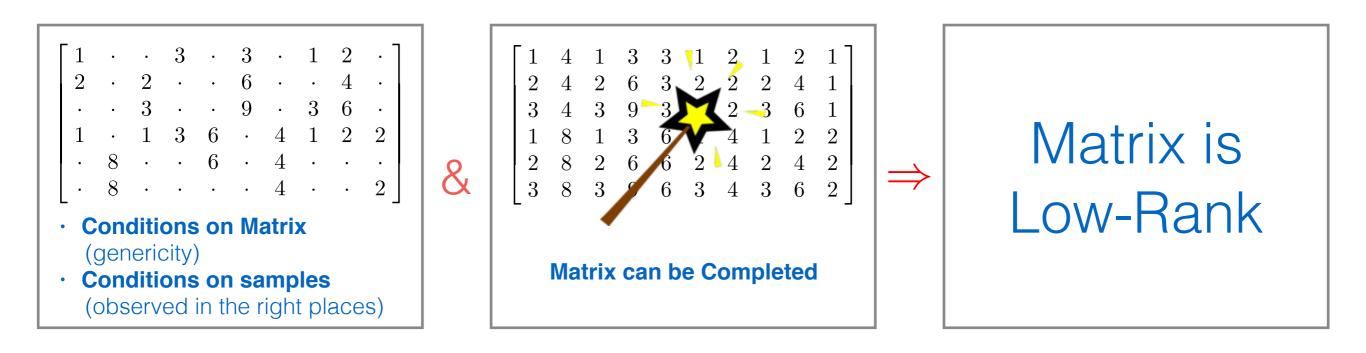
Observed in the right places

What do I mean? (These conditions are met with high probability)

Suppose X_{Ω} is a *generic* matrix *observed in the right places*. If there is a rank-r matrix that agrees with X on Ω , then X is indeed rank-r with probability 1.

Main Result

Suppose X_{Ω} is a *generic* matrix *observed in the right places*. If there is a rank-r matrix that agrees with X on Ω , then X is indeed rank-r with probability 1.



Main Result

This is just a first step

What we would like to say

(Future work)

Gràcies