The Information-Theoretic Requirements of Subspace Clustering with Missing Data

Daniel L. Pimentel-Alarcón

Robert Nowak University of Wisconsin-Madison

ICML 2016

Subspace Clustering

▶ We are given: Columns in a Union of Subspaces.

	1	4	1	3	3	1	2	1	2	$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \\ 2 \end{bmatrix}$	
	2	4	2	6	3	2	2	2	4	1	
İ	3	4	3	9	3	3	2	3	6	1	
İ	1	8	1	3	6	1	4	1	2	2	
	2	8	2	6	6	2	4	2	4	2	
	_ 3	8	3	9	6	3	4	3	6	$2 \rfloor$	

Subspace Clustering

- ▶ We are given: Columns in a Union of Subspaces.
- ► **Goal:** Cluster the columns or find the subspaces.

```
\begin{bmatrix} 1 & 4 & 1 & 3 & 3 & 1 & 2 & 1 & 2 & 1 \\ 2 & 4 & 2 & 6 & 3 & 2 & 2 & 2 & 4 & 1 \\ 3 & 4 & 3 & 9 & 3 & 3 & 2 & 3 & 6 & 1 \\ 1 & 8 & 1 & 3 & 6 & 1 & 4 & 1 & 2 & 2 \\ 2 & 8 & 2 & 6 & 6 & 2 & 4 & 2 & 4 & 2 \\ 3 & 8 & 3 & 9 & 6 & 3 & 4 & 3 & 6 & 2 \end{bmatrix}
```


Subspace Clustering with Missing Data (SCMD)

- ▶ We are given: Incomplete columns in a Union of Subspaces.
- ▶ **Goal:** Cluster the columns or find the subspaces.

```
\begin{bmatrix} 1 & \cdot & \cdot & 3 & \cdot & 3 & \cdot & 1 & 2 & \cdot \\ 2 & \cdot & 2 & \cdot & \cdot & 6 & \cdot & \cdot & 4 & \cdot \\ \cdot & \cdot & 3 & \cdot & \cdot & 9 & \cdot & 3 & 6 & \cdot \\ 1 & \cdot & 1 & 3 & 6 & \cdot & 4 & 1 & 2 & 2 \\ \cdot & 8 & \cdot & \cdot & 6 & \cdot & 4 & \cdot & \cdot & \cdot \\ \cdot & 8 & \cdot & \cdot & \cdot & 4 & \cdot & \cdot & 2 \end{bmatrix}
```


This arises in many Applications

First thing we need to ask:

In principle, what do we need to succeed?

First thing we need to ask:

In principle, what do we need to succeed?

To find out, let us look back at the full-data case.

- Suppose I have unlimited computational power
- ► Say I want to identify *r*-dimensional subspaces from **complete** columns:

$$\mathbf{X} = \begin{bmatrix} 3 & 1 & 3 & 2 & 4 & 5 & 7 & 1 & 8 & 5 \\ 3 & 3 & 1 & 2 & 4 & 5 & 5 & 1 & 8 & 7 \\ 1 & 3 & 2 & 3 & 5 & 4 & 7 & 5 & 5 & 8 \\ 2 & 1 & 2 & 3 & 3 & 5 & 5 & 4 & 7 & 4 \end{bmatrix}$$

Key Idea:

ightharpoonup r columns define a *candidate* subspace.

Key Idea:

r columns define a *candidate* subspace.

Key Idea:

- r columns define a candidate subspace.
- ▶ I can certify this subspace with an $(r+1)^{th}$ column.

Key Idea:

- r columns define a *candidate* subspace.
- ▶ I can certify this subspace with an $(r+1)^{th}$ column.

I can try all combinations of r+1 columns (here r=2).

$\lceil 3 \rceil$	1	3
3	3	1
1	3	2
$\lfloor 2$	1	2

Linearly independent

Columns come from different subspaces.

$$\begin{bmatrix} 3 & 2 & 5 \\ 3 & 2 & 5 \\ 1 & 3 & 4 \\ 2 & 3 & 5 \end{bmatrix}$$

Linearly dependent

Columns come from the same subspace.

We can try combinations of r+1 columns until we identify all subspaces

$$S_1^{\star} = \operatorname{span} \begin{bmatrix} 1 & 3 \\ 3 & 1 \\ 3 & 2 \\ 1 & 2 \end{bmatrix}$$
 $S_2^{\star} = \operatorname{span} \begin{bmatrix} 3 & 2 \\ 3 & 2 \\ 1 & 3 \\ 2 & 3 \end{bmatrix}$

Then we can trivially cluster the columns.

$$\begin{bmatrix} 3 & 1 & 3 & 2 & 4 & 5 & 7 & 1 & 8 & 5 \\ 3 & 3 & 1 & 2 & 4 & 5 & 5 & 1 & 8 & 7 \\ 1 & 3 & 2 & 3 & 5 & 4 & 7 & 5 & 5 & 8 \\ 2 & 1 & 2 & 3 & 3 & 5 & 5 & 4 & 7 & 4 \end{bmatrix}$$

Key idea:

r+1 **complete** columns *fit* in an r-dimensional subspace \updownarrow Columns come from the same subspace.

- ▶ We don't know where points really are!
- ▶ Say I give you a point *without* the *z* coordinate.

- We don't know where points really are!
- ► Say I give you a point *without* the *z* coordinate.
- ► Say I give you an other point *without* the *x* coordinate.

- We don't know where points really are!
- ▶ Say I give you a point *without* the *z* coordinate.
- ▶ Say I give you an other point *without* the *x* coordinate.

Is there only one subspace that agrees with these columns?

► ∃ False subspaces that can fit arbitrarily many incomplete columns from different subspaces.

```
\begin{bmatrix} 1 & \cdot & \cdot & 3 & \cdot & 3 & \cdot & 1 & 2 & \cdot \\ 2 & \cdot & 2 & \cdot & \cdot & 6 & \cdot & \cdot & 4 & \cdot \\ \cdot & \cdot & 3 & \cdot & \cdot & 9 & \cdot & 3 & 6 & \cdot \\ 1 & \cdot & 1 & 3 & 6 & \cdot & 4 & 1 & 2 & 2 \\ \cdot & 8 & \cdot & \cdot & 6 & \cdot & 4 & \cdot & \cdot & \cdot \\ \cdot & 8 & \cdot & \cdot & \cdot & 4 & \cdot & \cdot & 2 \end{bmatrix} \subset \mathsf{span} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \end{bmatrix}
```

- So even with unlimited computational power:
 - ▶ We could run into **false** subspaces!
 - ► And get a wrong clustering!
- How can we guarantee that this won't happen?
- We need to make sure that columns are observed in the right places.

What do I mean observed in the right places?

We say X_{Ω} is observed in the right places if every matrix $X'_{\Omega'}$ formed with a *proper* subset of the columns in X_{Ω} satisfies

 $\#RowsWithObservations(\mathbf{X}'_{\Omega'}) \geq \#Columns(\mathbf{X}'_{\Omega'}) + r.$

What do I mean observed in the right places?

We say X_{Ω} is observed in the right places if every matrix $X'_{\Omega'}$ formed with a *proper* subset of the columns in X_{Ω} satisfies

$$\#RowsWithObservations(\mathbf{X}'_{\Omega'}) \geq \#Columns(\mathbf{X}'_{\Omega'}) + r.$$

$$\mathbf{X}_{\Omega} = \begin{bmatrix} 1 & \cdot & 3 & \cdot \\ 1 & 2 & \cdot & \cdot \\ \cdot & 2 & 3 & \cdot \\ \cdot & \cdot & \cdot & 4 \\ \cdot & \cdot & \cdot & 4 \end{bmatrix} \qquad \mathbf{X}_{\Omega} = \begin{bmatrix} 1 & \cdot & \cdot & \cdot \\ 1 & 2 & \cdot & \cdot \\ \cdot & 2 & 3 & \cdot \\ \cdot & \cdot & 3 & 4 \\ \cdot & \cdot & \cdot & 4 \end{bmatrix}$$

$$\underbrace{m(\Omega')}_{3} \ngeq \underbrace{n(\Omega')/r + r}_{4} \qquad \underbrace{m(\Omega')}_{4} \ge \underbrace{n(\Omega')/r + r}_{4}$$

How do we know if columns come from same subspace?

Key intuition:

d-r+1 incomplete columns (observed in the right places) behave as one complete column.

$$\begin{bmatrix} 4 & 1 & \cdot \\ 4 & 3 & 1 \\ \cdot & 3 & 2 \\ 3 & \cdot & 2 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 3 \\ 3 \\ 1 \end{bmatrix}$$

How do we know if columns come from same subspace?

Recall:

r+1 **complete** columns *fit* in an r-dimensional subspace \updownarrow Columns come from the same subspace.

How do we know if columns come from same subspace? Analogously:

Theorem (P.-A., Nowak, ICML '16) $r+1 \ sets \ of \ d-r+1 \ incomplete \ columns \ (observed \ in \ the \ right \ places) \ fit \ in \ an \ r-dimensional \ subspace$ $Columns \ come \ from \ the \ same \ subspace.$

Main Idea of the Proof

Each column with r+1 samples imposes one polynomial constraint on the subspaces that can agree with it.

$$\mathbf{X}_{\Omega} = \left[egin{array}{ccc} \mathbf{x}_{\omega_1} & \mathbf{x}_{\omega_2} \\ \vdots & 2 \\ 1 & 2 \\ 1 & \cdot \end{array}
ight]$$

- ► A subspace S agrees with $\mathbf{X}_{\Omega} \iff \begin{cases} f_1(S_{\omega_1}|\mathbf{x}_{\omega_1}) = 0 \\ f_2(S_{\omega_2}|\mathbf{x}_{\omega_2}) = 0 \end{cases}$.
- ▶ If our columns are observed in the right places, only the true subspaces will be consistent with the constraints.

Extend Linear Algebra Results to Missing Data

	Uniquely define a subspace	Certify/Discard subspaces
Full data	r	r+1
Missing data		

Extend Linear Algebra Results to Missing Data

	Uniquely define a subspace	Certify/Discard subspaces
Full data	r	r+1
Missing data	$(r+1)(d-r)^*$	(r+1)(d-r+1)*

* Observed in the right places.

Samples per column

How am I on time?

Now we know when we

should be able to succeed.

Now we know when we should be able to succeed.

Now the question is: How?

Computational Resources Efficient Prohibitive Efficient Who cares.

Computational Resources Efficient Prohibitive HRMC Who cares.

Computational Resources

	Efficient	Prohibitive
Samples Efficient		$\mathcal{F} = 0$
Number of Samples Prohibitive Efficier	HRMC	Who cares.

Computational Resources

	Efficient	Prohibitive
Samples Efficient	EM k-GROUSE SSC-EWZF LRMC+SSC	$\mathcal{F} = 0$
Number of Samples Prohibitive Efficier	HRMC	Who cares.

Thanks.

What do I mean generic?

