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Subspace Clustering

» We are given: Columns in a Union of Subspaces.
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Subspace Clustering

» We are given: Columns in a Union of Subspaces.

» Goal: Cluster the columns or find the subspaces.
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Subspace Clustering with Missing Data (SCMD)

» We are given: Incomplete columns in a Union of Subspaces.

» Goal: Cluster the columns or find the subspaces.
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This arises in many Applications




First thing we need to ask:

In principle,
what do we need to succeed?



First thing we need to ask:

In principle,
what do we need to succeed?

To find out, let us look back at the full-data case.



Full-data case

> Suppose | have computational power

» Say | want to identify r-dimensional subspaces from complete
columns:
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Full-data case

Key ldea:

» 7 columns define a candidate subspace.
Y




Full-data case

Key ldea:

» 7 columns define a candidate subspace.
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Full-data case

Key ldea:

» 1 columns define a candidate subspace.

th column.

> | can certify this subspace with an (r + 1)
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Full-data case

Key ldea:

» 1 columns define a candidate subspace.

th column.

> | can certify this subspace with an (r + 1)
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Full-data case

| can try all combinations of r + 1 columns (here r = 2).
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Columns come from ¢
different subspaces. Columns come from the same
subspace.




Full-data case

We can try combinations of » + 1 columns until we identify all
subspaces

ST = span S5 = span
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Then we can trivially cluster the columns.
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Full-data case

Key idea:

r 4+ 1 complete columns fit in an r-dimensional subspace

)

Columns come from the same subspace.
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What changes with missing data?

» We don't know where points really are!

» Say | give you a point without the z coordinate.
z




What changes with missing data?

» We don't know where points really are!
» Say | give you a point without the z coordinate.

» Say | give you an other point without the x coordinate.




What changes with missing data?

» We don't know where points really are!
» Say | give you a point without the z coordinate.

» Say | give you an other point without the x coordinate.

> Is there only one subspace that agrees with these columns?



What changes with missing data?

» 1 False subspaces that can fit arbitrarily many incomplete
columns from different subspaces.
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What changes with missing data?

» So even with unlimited computational power:

» We could run into false subspaces!
» And get a wrong clustering!

» How can we guarantee that this won't happen?

> We need to make sure that columns are observed in the right
places.



What do | mean observed in the right places?

We say Xgq is observed in the right places if every matrix X’Q,
formed with a proper subset of the columns in X satisfies

#RowsWithObservations(Xg,) > #Columns(Xg,) + .




What do | mean observed in the right places?

We say Xq is observed in the right places if every matrix X;')’
formed with a proper subset of the columns in X satisfies

#RowsWithObservations(Xg,) > #Columns(Xg) + .
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How do we know if columns come from same subspace?

Key intuition:

d —r+ 1 incomplete columns (observed in the right places)
behave as one complete column.
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How do we know if columns come from same subspace?

Recall:

r + 1 complete columns fit in an r-dimensional subspace

)

Columns come from the same subspace.
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How do we know if columns come from same subspace?
Analogously:

Theorem (P.-A., Nowak, ICML '16)

r+ 1 sets of d — r + | incomplete columns (observed in the
right places) fit in an r-dimensional subspace
)

Columns come from the same subspace.




Main ldea of the Proof

Each column with r 4+ 1 samples imposes one polynomial
constraint on the subspaces that can agree with it.

fl(Swl ‘le) =0

fQ(Swz‘XwQ) =0

» If our columns are observed in the right places, only the true
subspaces will be consistent with the constraints.

> A subspace S agrees with X <= {



Extend Linear Algebra Results to Missing Data

Uniquely define Certify/Discard

a subspace subspaces
Full 7‘ 1
data T
Missing
data




Extend Linear Algebra Results to Missing Data

Full
data

Missing
data

Uniquely define Certify/Discard
a subspace subspaces
T r+1
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* Observed in the right places.



The Big Picture

Previously known
under random samplings
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The Big Picture
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The Big Picture
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The Big Picture

Samples per column
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The Big Picture

Clustering Success
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How am | on time?



Now we know when we
should be able to succeed.



Now we know when we
should be able to succeed.

Now the question is: How?



Algorithms?

Computational Resources
Efficient Prohibitive
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Algorithms?

Computational Resources
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Algorithms?

Number of Samples

Efficient

Prohibitive

Computational Resources
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Algorithms?

Computational Resources

Efficient Prohibitive
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Thanks.



What do | mean generic?




