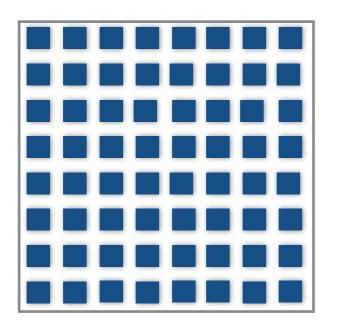
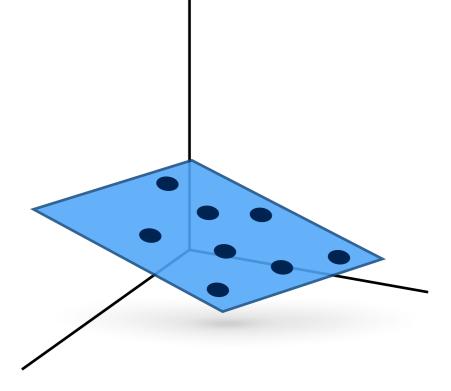
Mixture Matrix Completion: Theory, Algorithms and Open Questions

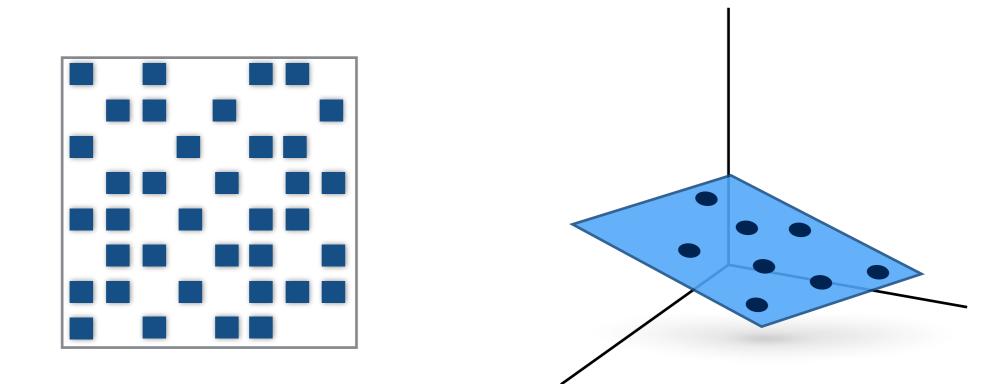
Daniel Pimentel-Alarcón

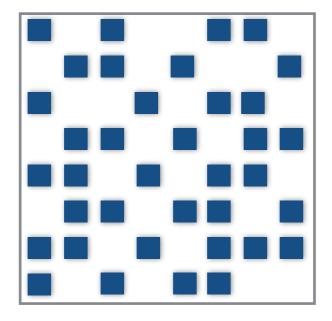
Wisconsin Institute for Discovery UNIVERSITY *of* WISCONSIN-MADISON Department of Electrical and Computer Engineering

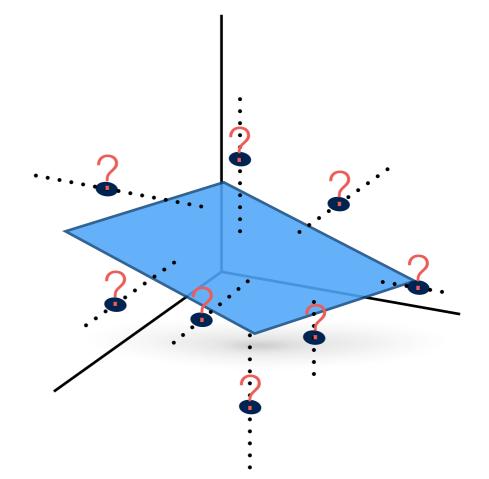
SIAM - Optimization, 2017

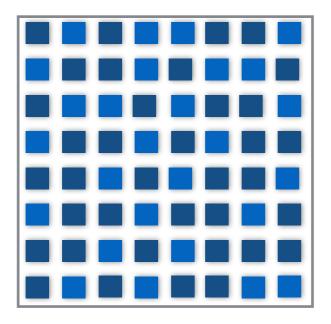


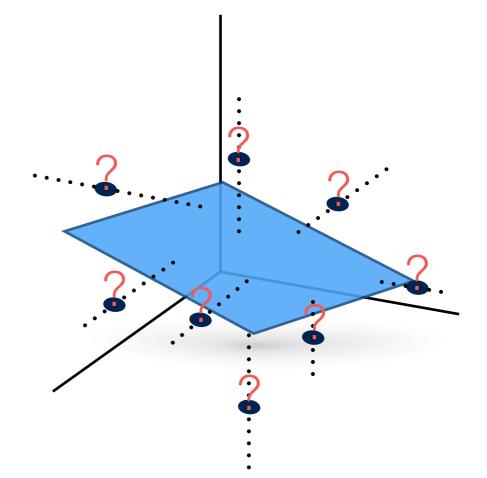


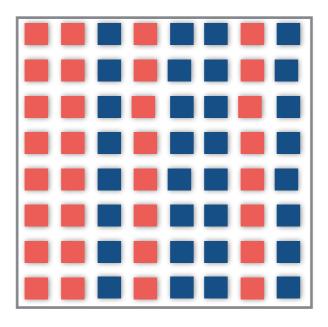


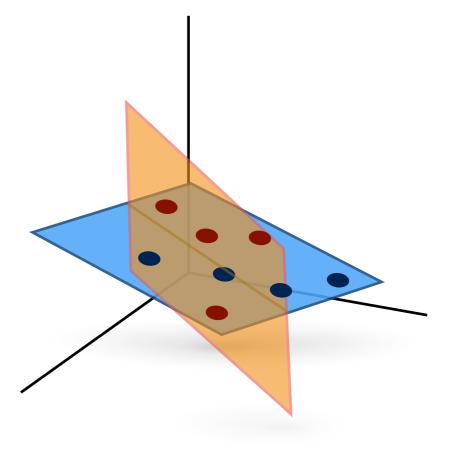


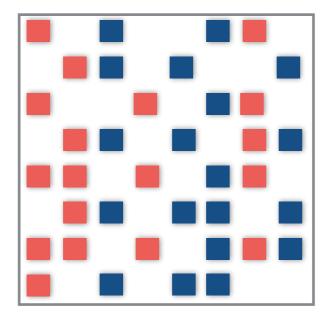


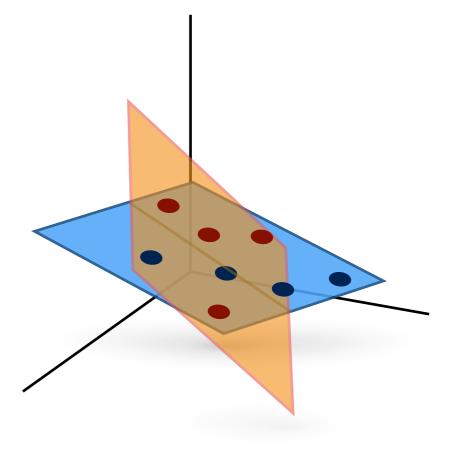


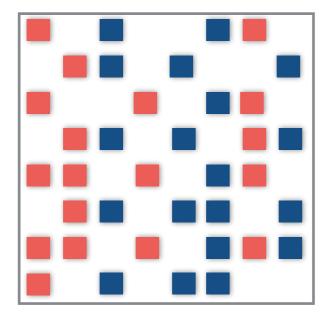


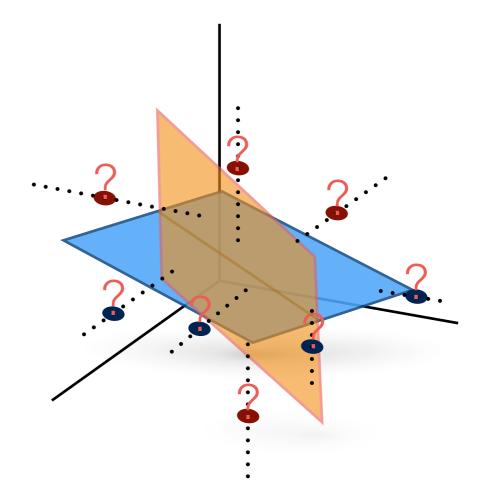


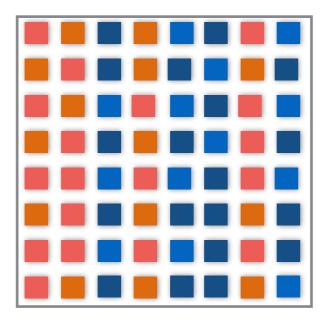


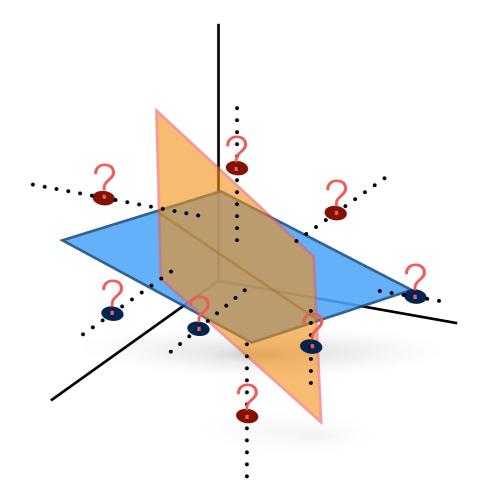


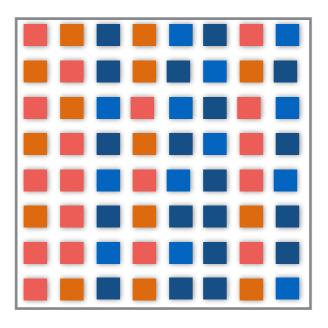


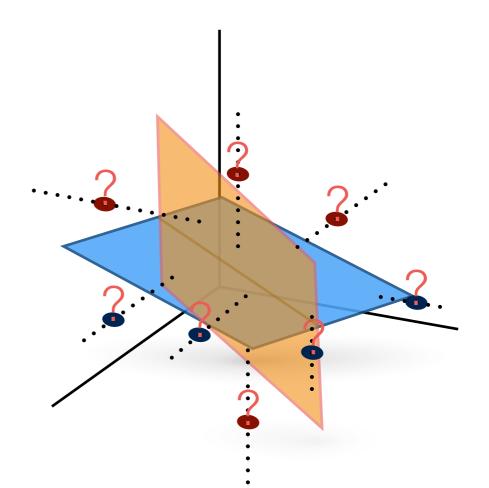




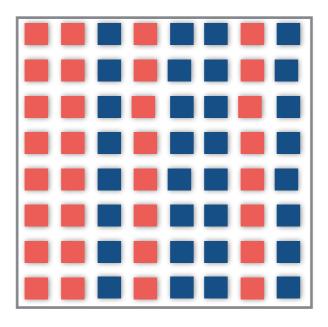


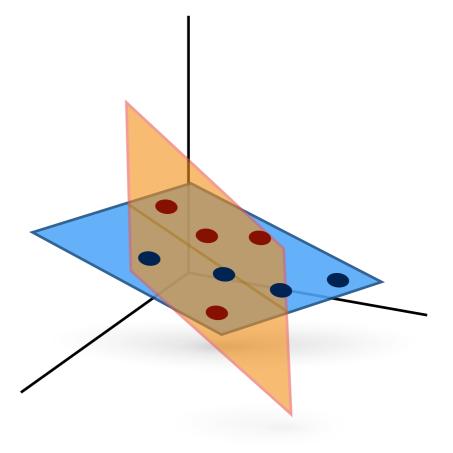


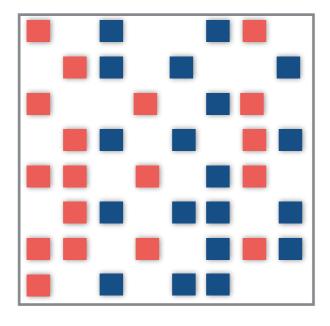


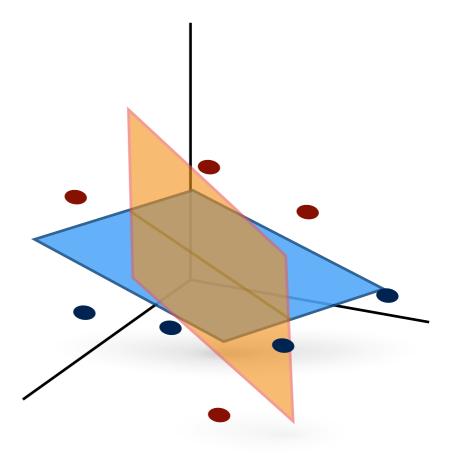


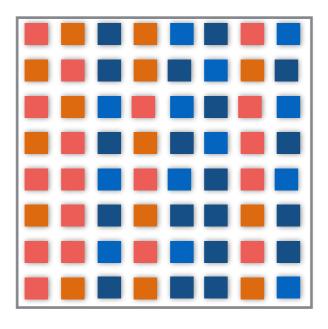
a.k.a. High-Rank Matrix Completion or Subspace Clustering with Missing Data.

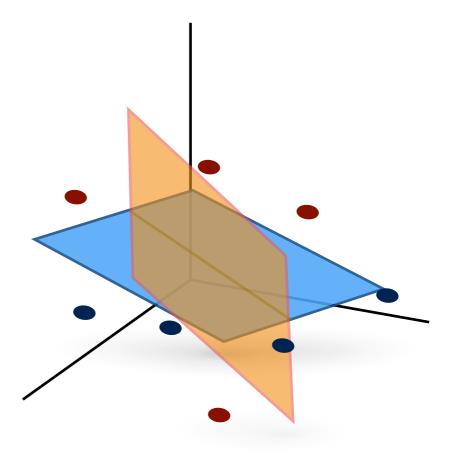


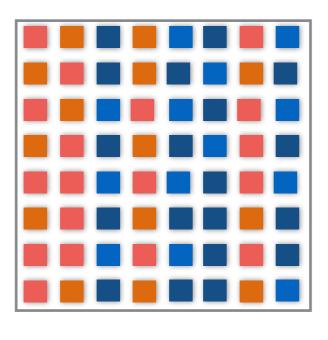


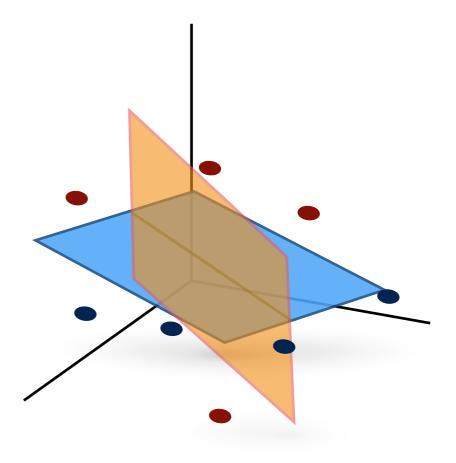




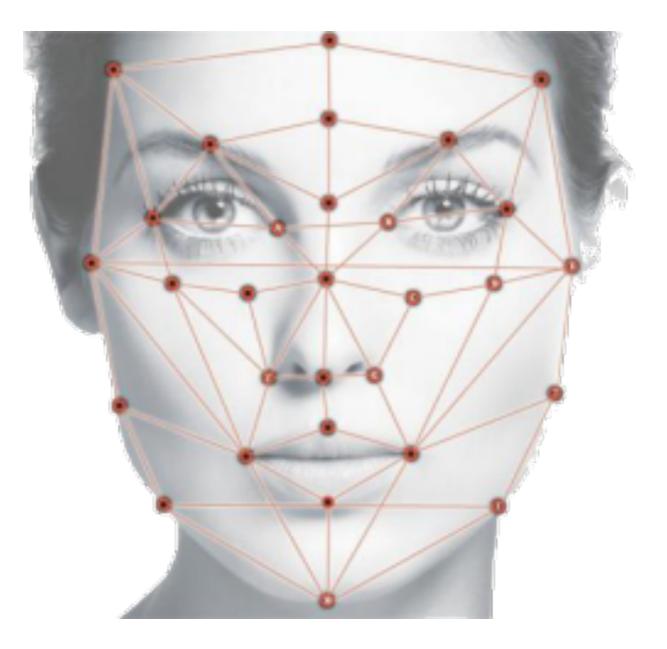




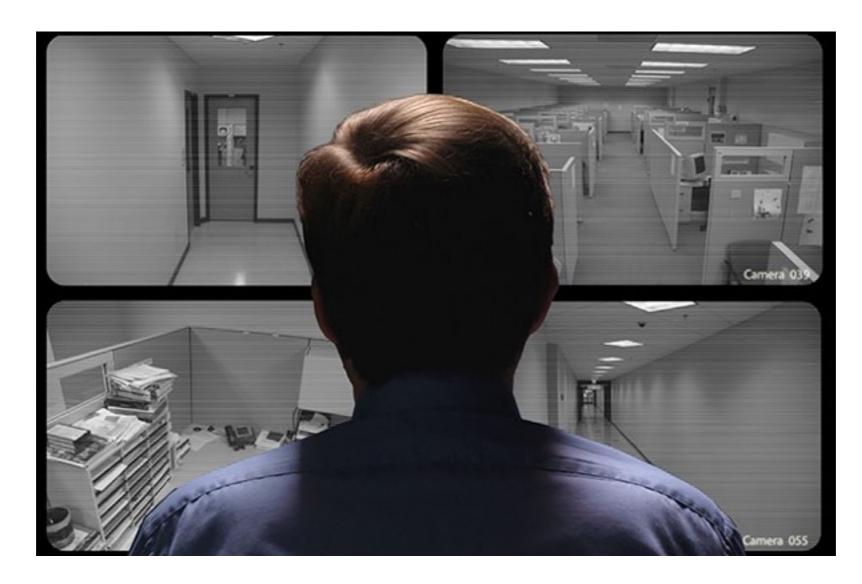


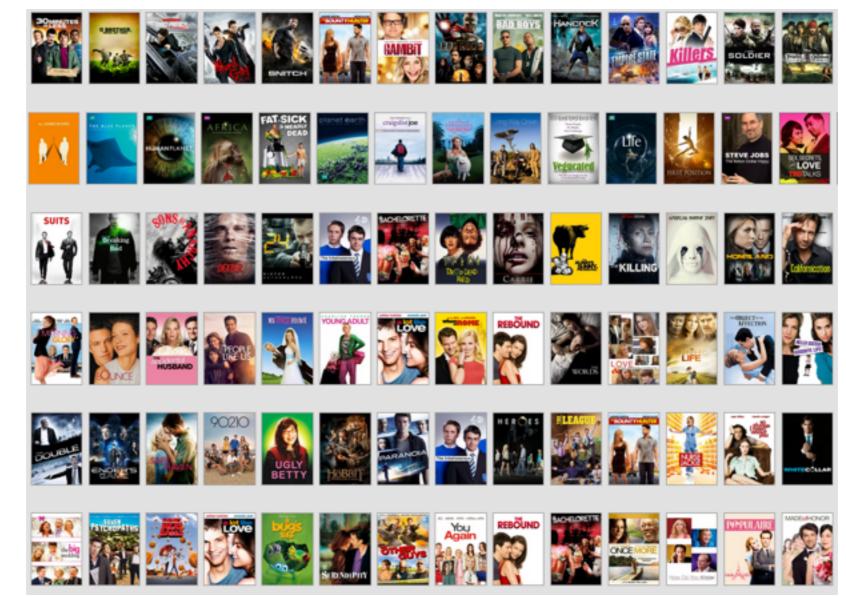


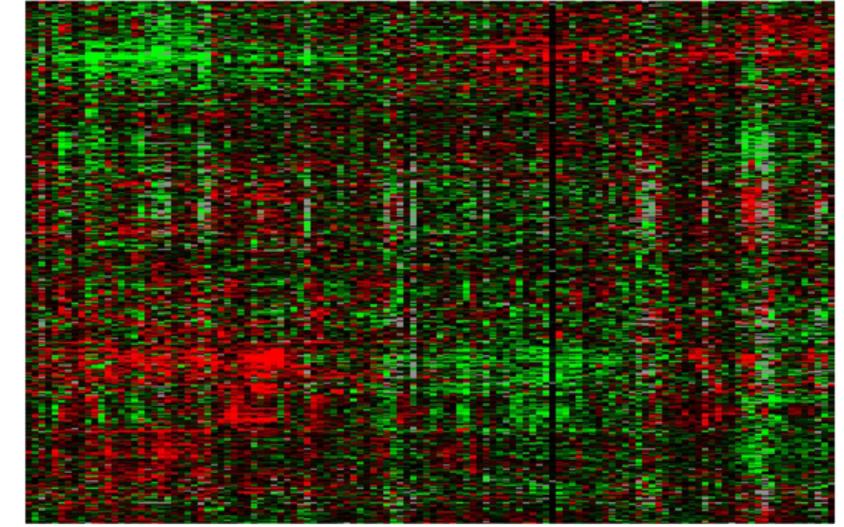
a.k.a. High-Rank Matrix Completion or Subspace Clustering with Missing Data.



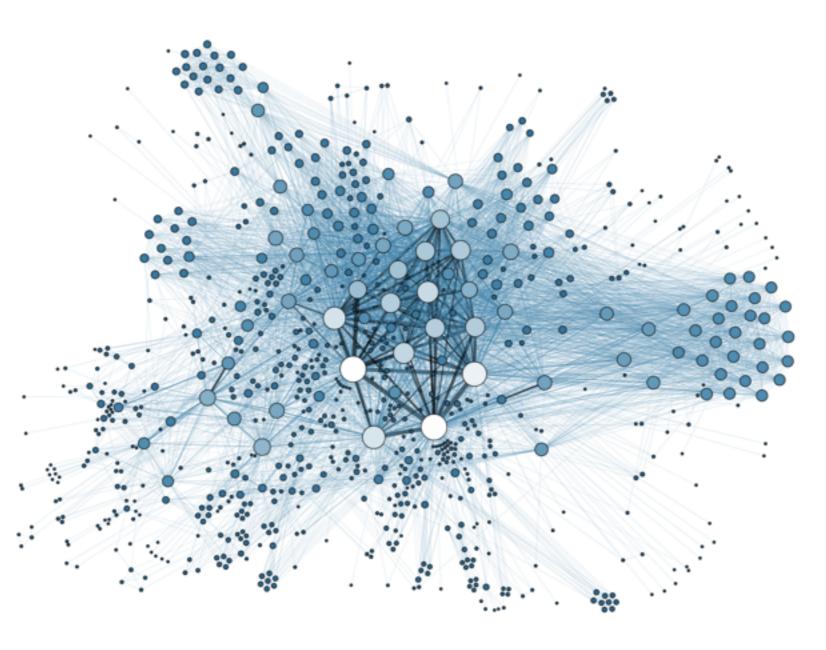




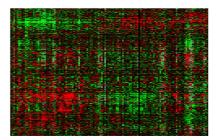


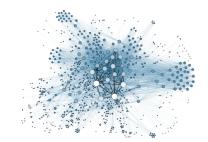


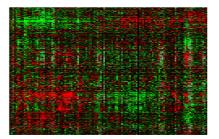


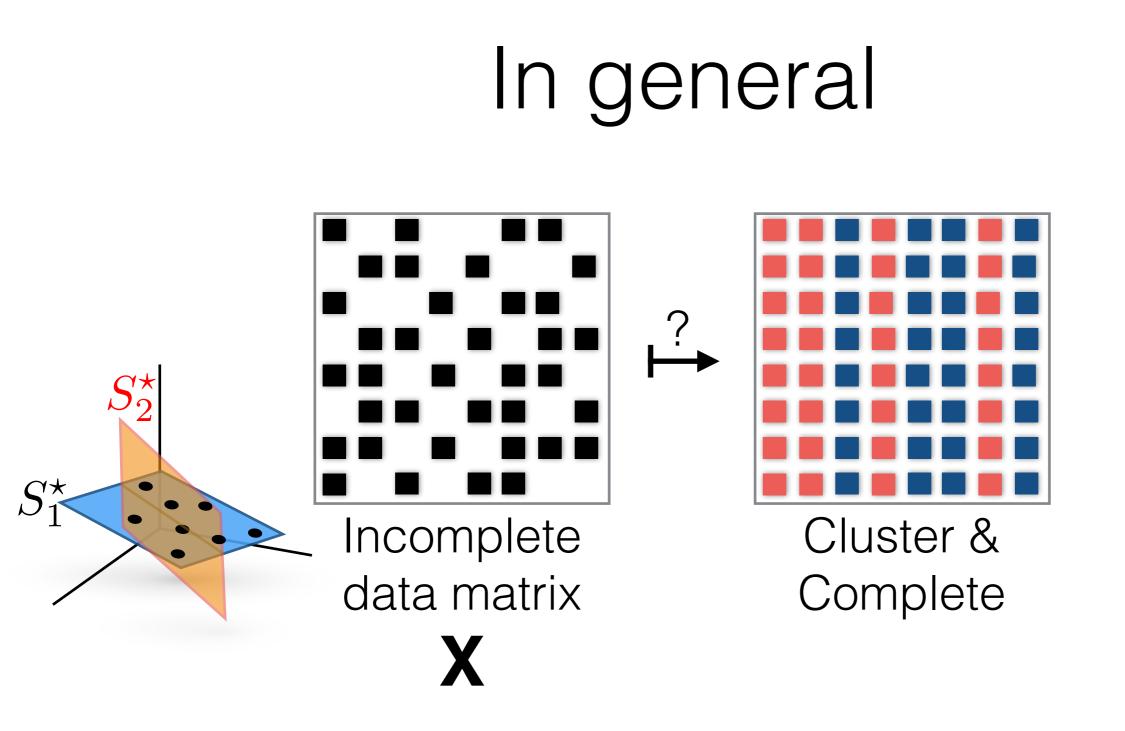


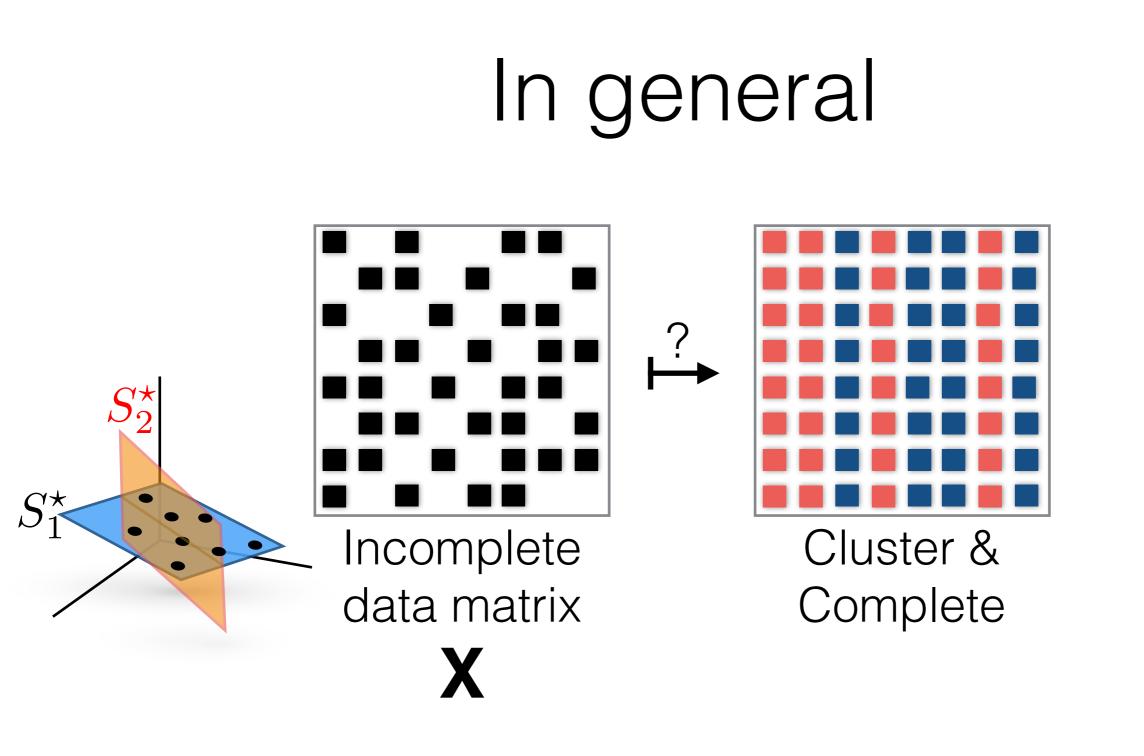
	4.7	
Mar		

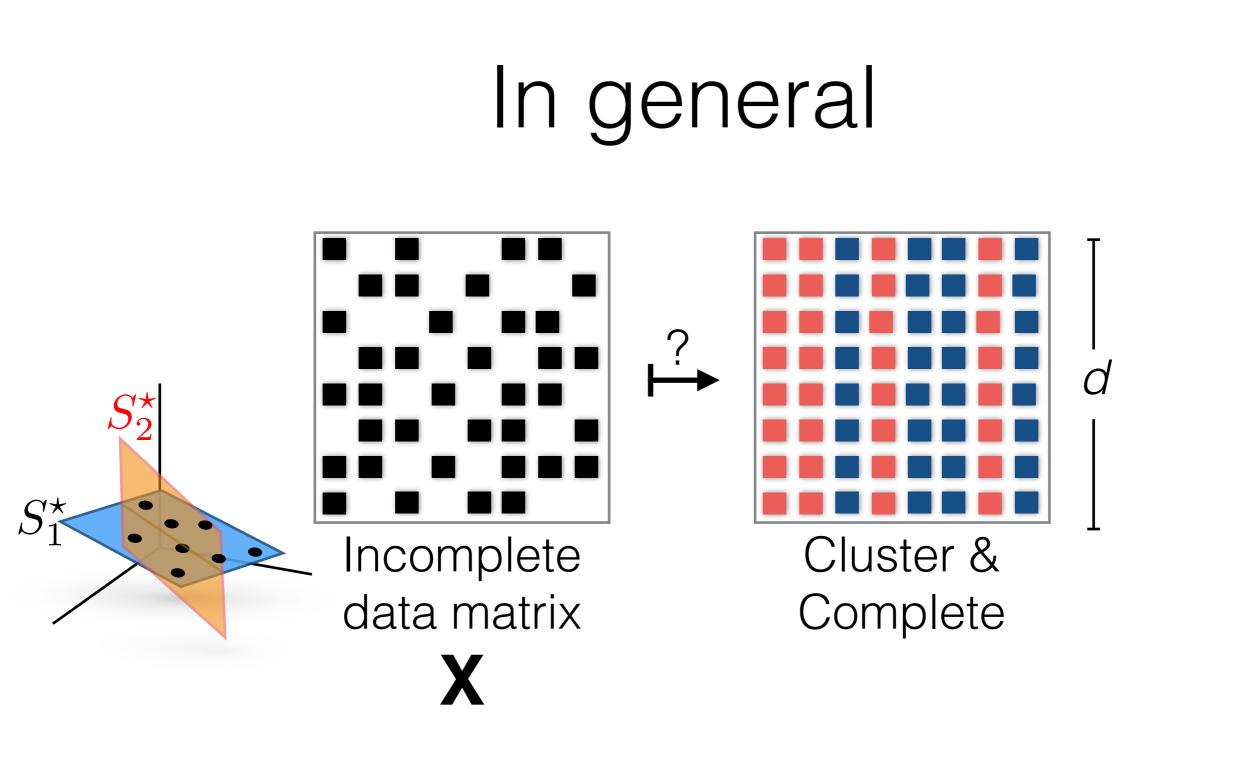


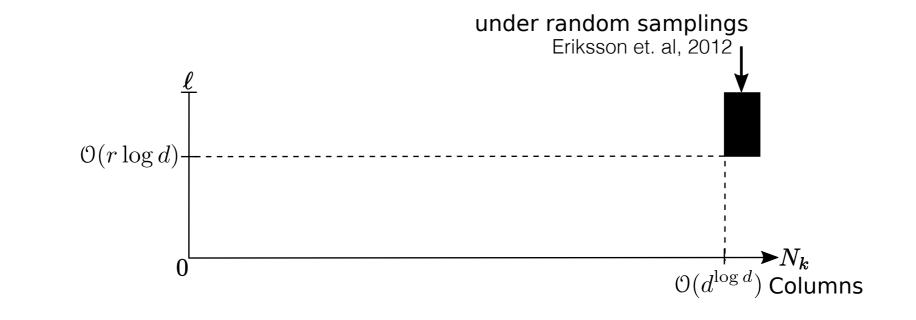




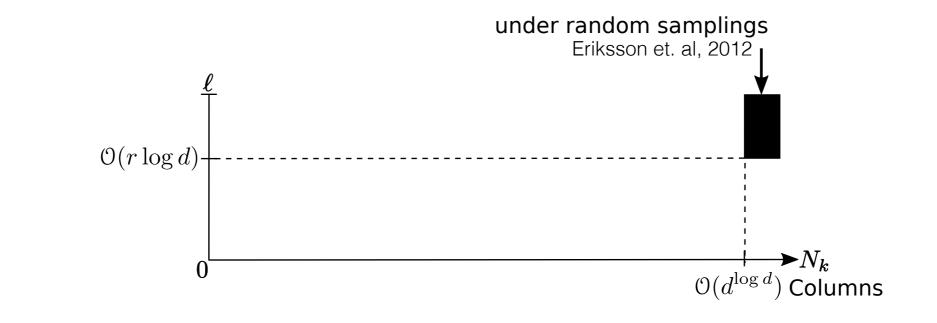




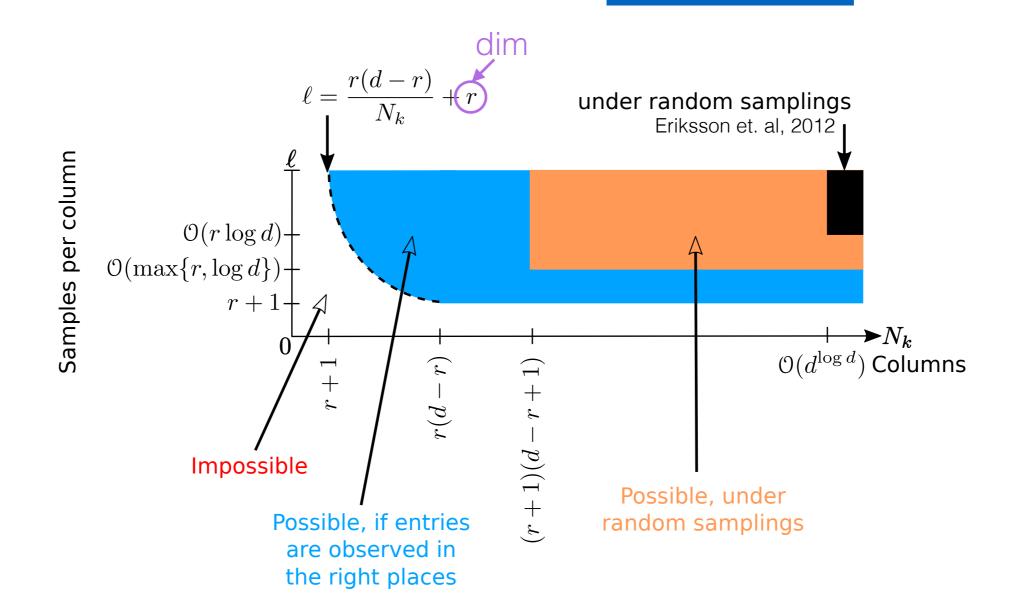




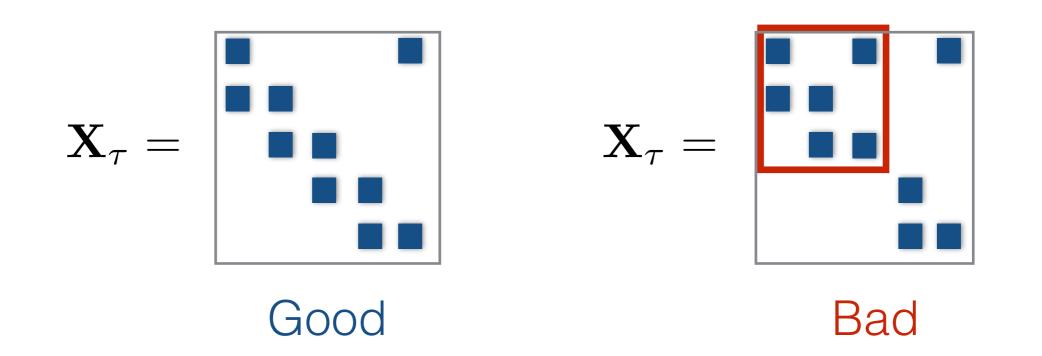
Samples per column



Samples per column



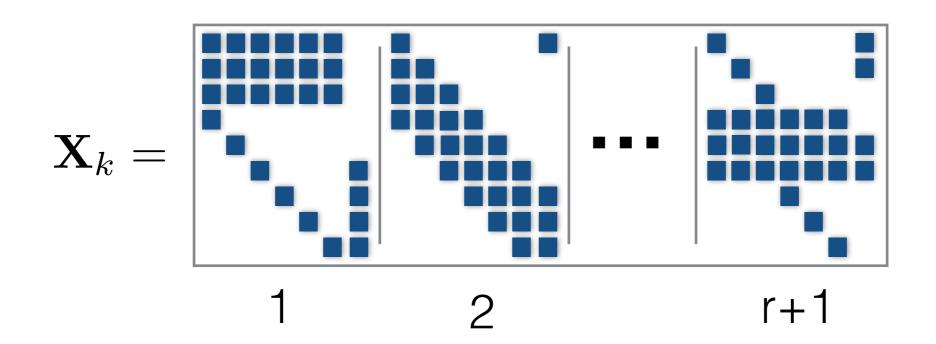
Information-theoretic requirements P.-A., Nowak, 2016 Let \mathbf{X}_{τ} be a matrix formed with d - r + 1 columns of \mathbf{X}_k . We say \mathbf{X}_{τ} is observed in the right places if every proper subset of n columns of \mathbf{X}_{τ} has observations on at least n + r rows.



Observed in the right places P.-A., Nowak, 2016

What do I mean?

For every k, suppose \mathbf{X}_k contains r + 1 disjoint matrices $\{\mathbf{X}_{\tau}\}_{\tau=1}^{r+1}$ observed in the right entries. Then $\{S_k^{\star}\}_{k=1}^K$ is the only union of subspaces that agrees with \mathbf{X} .



Information-theoretic requirements P.-A., Nowak, 2016

THE FOLLOWING **PREVIEW** HAS BEEN APPROVED FOR **ALL AUDIENCES**

BY THE MOTION PICTURE ASSOCIATION OF AMERICA INC.

THE FILM ADVERTISED HAS BEEN RATED

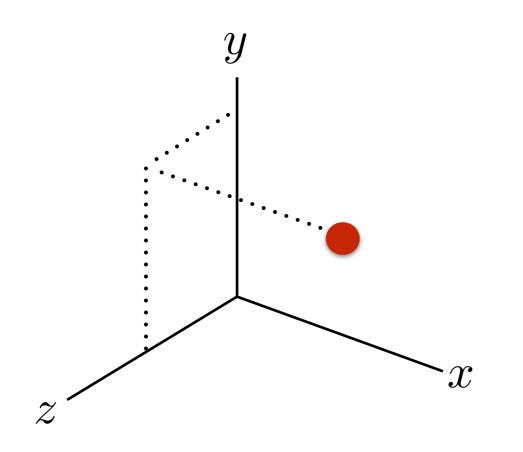
RESTRICTED

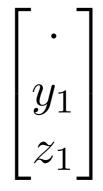
UNDER 17 REQUIRES ACCOMPANYING PARENT OR GUARDIAN

ALGEBRAIC GEOMETRY

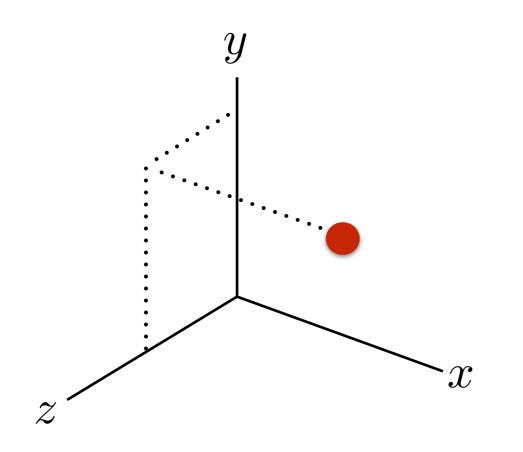
www.filmratings.com

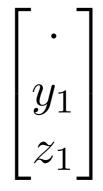
www.mpaa.org



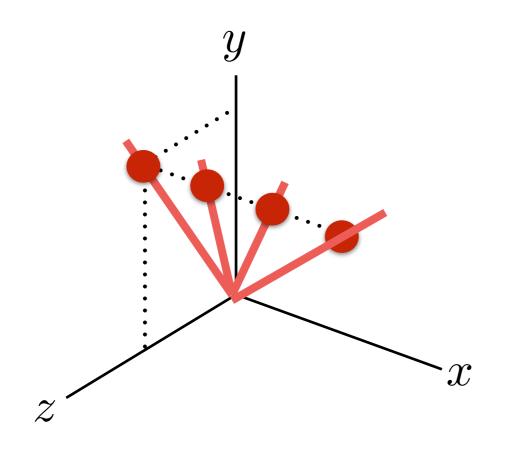


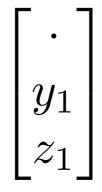
A flavor of our ideas



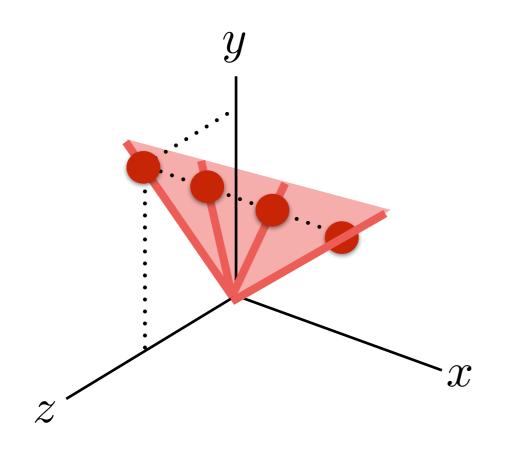


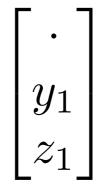
A flavor of our ideas



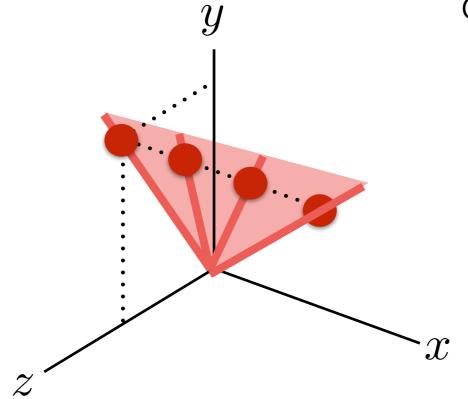


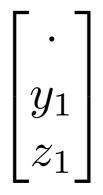
A flavor of our ideas

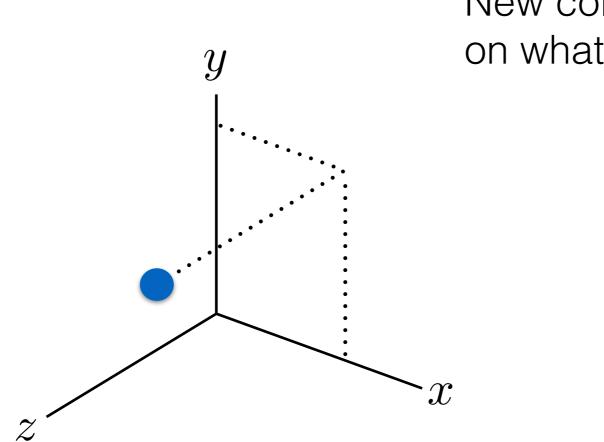




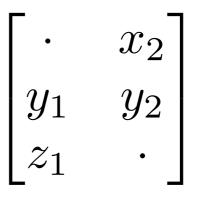
This column imposes **1** restriction on what the subspace may be

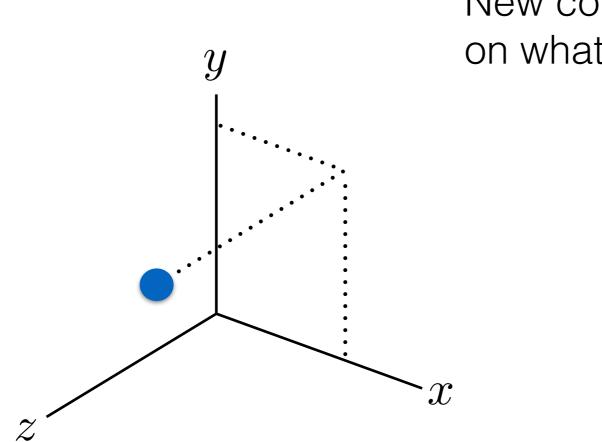




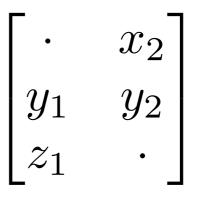


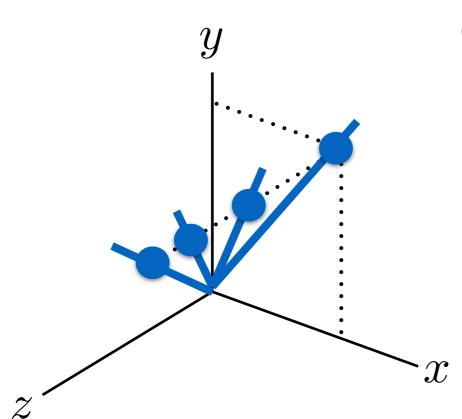
New column imposes **1** more restriction on what the subspace may be



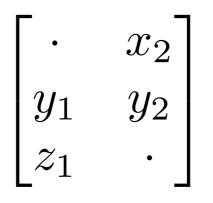


New column imposes 1 more restriction on what the subspace may be



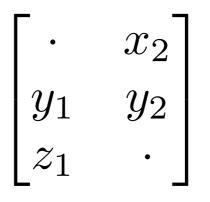


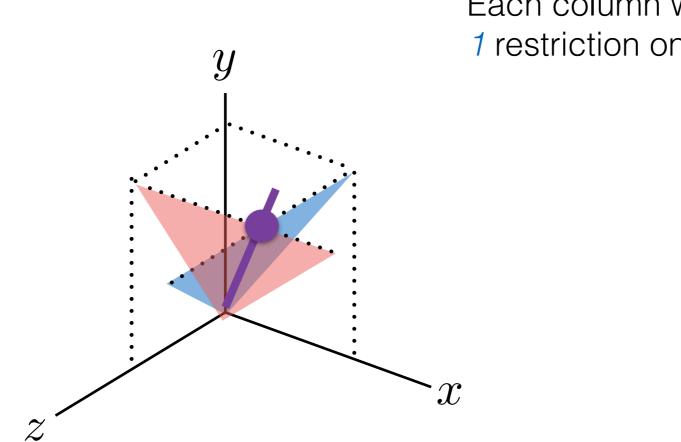
New column imposes **1** more restriction on what the subspace may be



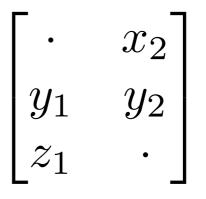
y i..., y

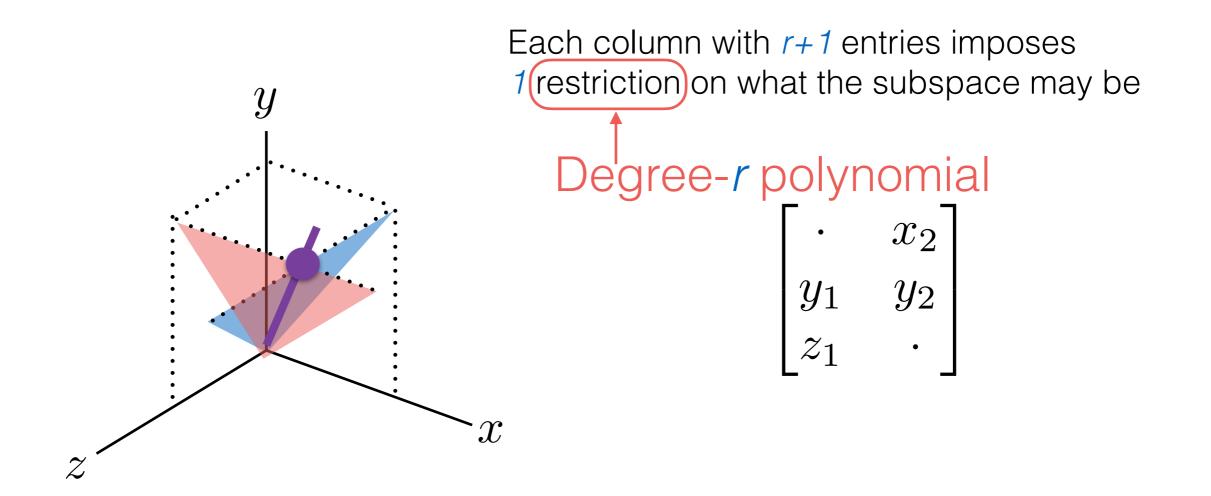
New column imposes **1** more restriction on what the subspace may be



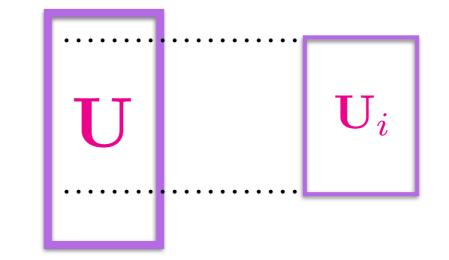


Each column with *r*+1 entries imposes 1 restriction on what the subspace may be





Take a basis of an arbitrary subspace



This subspace agrees with \mathbf{X}_i if and only if

$$\mathbf{x}_i = \mathbf{U}_i \boldsymbol{\theta}_i$$

We can split this as:

$$r \left\{ \begin{bmatrix} \boldsymbol{x}_{\Delta_i} \\ \boldsymbol{x}_{\Delta_i} \\ \vdots \\ 1 \left\{ \begin{bmatrix} \boldsymbol{x}_{\Delta_i} \\ \boldsymbol{x}_{\nabla_i} \end{bmatrix} = \begin{bmatrix} \mathbf{U}_{\Delta_i} \\ \vdots \\ \mathbf{U}_{\nabla_i} \end{bmatrix} \boldsymbol{\theta}_i. \right.$$

• We can use the top block to solve for θ_i :

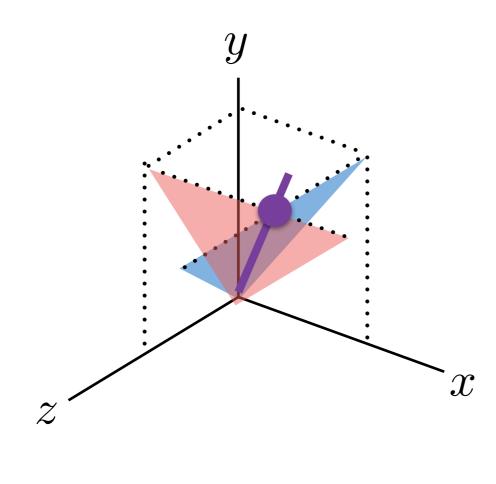
$$\boldsymbol{\theta}_i = \mathbf{U}_{\boldsymbol{\Delta}_i}^{-1} \boldsymbol{x}_{\boldsymbol{\Delta}_i}.$$

Plug this in the last row:

$$oldsymbol{x}_{oldsymbol{
abla}_i} = \mathbf{U}_{oldsymbol{
abla}_i} \mathbf{U}_{oldsymbol{\Delta}_i}^{-1} oldsymbol{x}_{oldsymbol{\Delta}_i}.$$

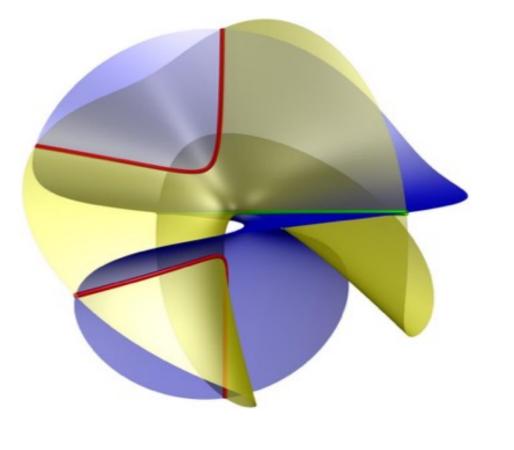
Or equivalently

$$\underbrace{\mathbf{x}_{\nabla_i} - \mathbf{U}_{\nabla_i}\mathbf{U}_{\Delta_i}^{-1}\mathbf{x}_{\Delta_i}}_{f_i(\mathbf{U}_i|\mathbf{x}_i)} = 0.$$



$$\mathbf{X} = \begin{bmatrix} \cdot & x_2 \\ y_1 & y_2 \\ z_1 & \cdot \end{bmatrix}$$

A subspace *S* agrees with \mathbf{X} $\begin{array}{l} \updownarrow\\ f_1(\mathbf{U}_1|x_1) = 0\\ f_2(\mathbf{U}_2|x_2) = 0 \end{array}$

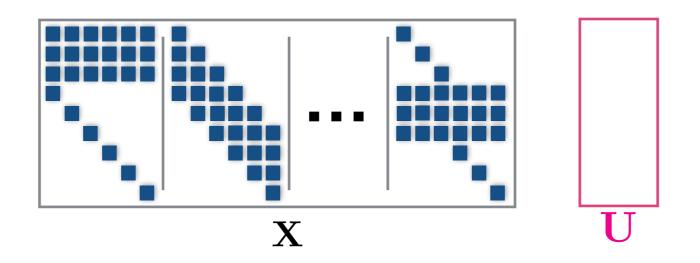


$$\mathbf{X} = \begin{bmatrix} \cdot & x_2 \\ y_1 & y_2 \\ z_1 & \cdot \end{bmatrix}$$

A subspace *S* agrees with \mathbf{X} $\begin{array}{l} \uparrow\\ f_1(\mathbf{U}_1|x_1) = 0\\ f_2(\mathbf{U}_2|x_2) = 0 \end{array}$

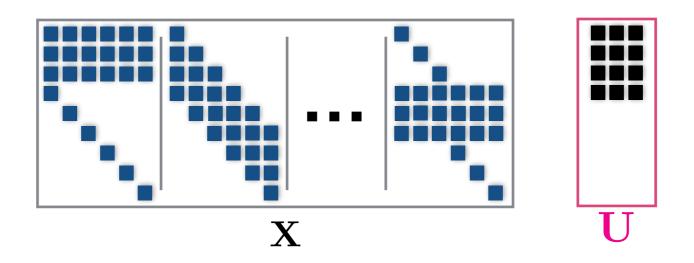
 $f_1(\mathbf{U}_1|x_1), f_2(\mathbf{U}_2|x_2), \ldots, f_N(\mathbf{U}_N|x_N)$

- The observed rows indicate the variables involved
- If data is observed in *the right entries*, all variables will be pined down



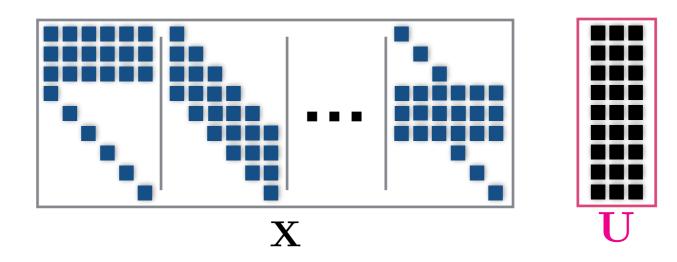
 $f_1(\mathbf{U}_1|x_1), f_2(\mathbf{U}_2|x_2), \ldots, f_N(\mathbf{U}_N|x_N)$

- The observed rows indicate the variables involved
- If data is observed in *the right entries*, all variables will be pined down



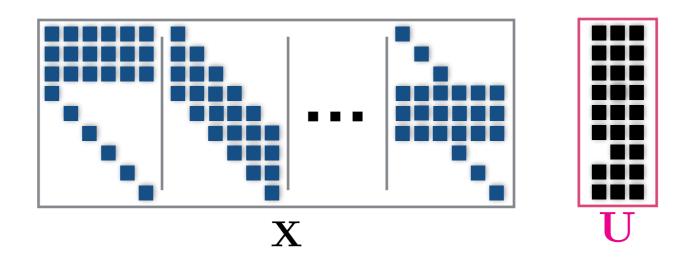
 $f_1(\mathbf{U}_1|x_1), f_2(\mathbf{U}_2|x_2), \ldots, f_N(\mathbf{U}_N|x_N)$

- The observed rows indicate the variables involved
- If data is observed in *the right entries*, all variables will be pined down



 $f_1(\mathbf{U}_1|x_1), f_2(\mathbf{U}_2|x_2), \ldots, f_N(\mathbf{U}_N|x_N)$

- The observed rows indicate the variables involved
- If data is observed in *the right entries*, all variables will be pined down



- If data is observed in *the right entries* Polynomials are algebraically independent
- After this, use cool Algebraic Geometry tricks:
 - Polynomials are a regular sequence
 - Polynomials define a zero-dimensional variety
 - At most finitely many solutions
 - Unique solution (with a bit more work)

Tree of the second seco

Each column with r+1 entries imposes 1 restriction on what the subspace may be

Degree-r polynomial

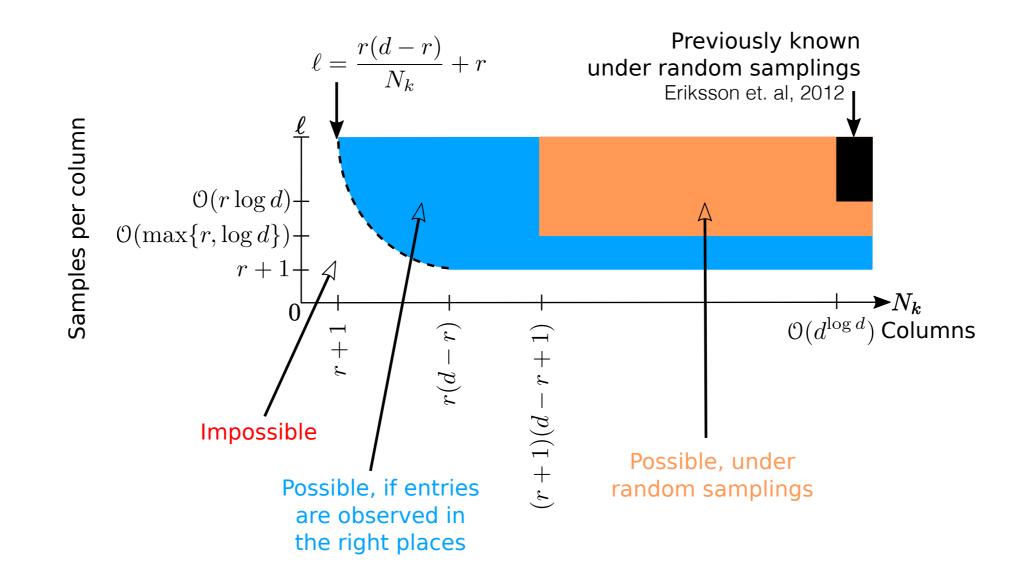
 $egin{array}{ccc} \cdot & x_2 \ y_1 & y_2 \ z_1 & \cdot \end{array}$

Entries observed in *the right places.*

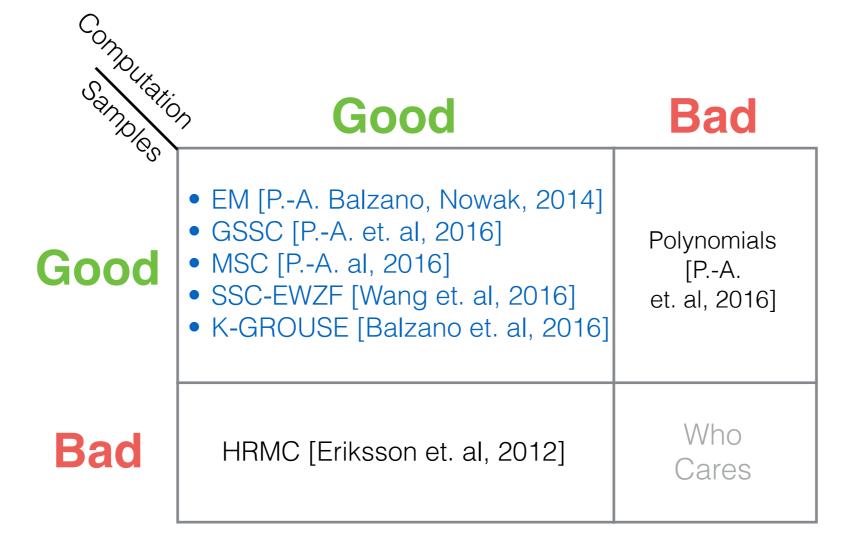
Completion is solution to polynomials.

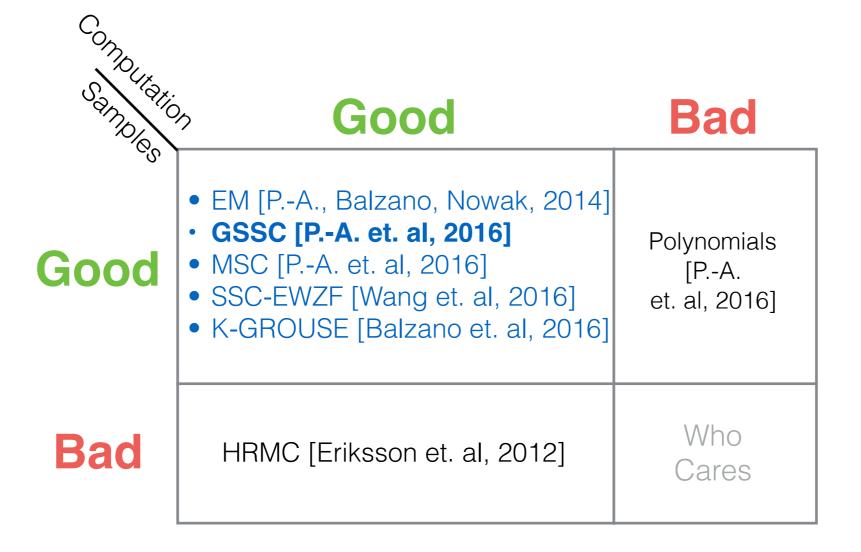
A flavor of our ideas Summary

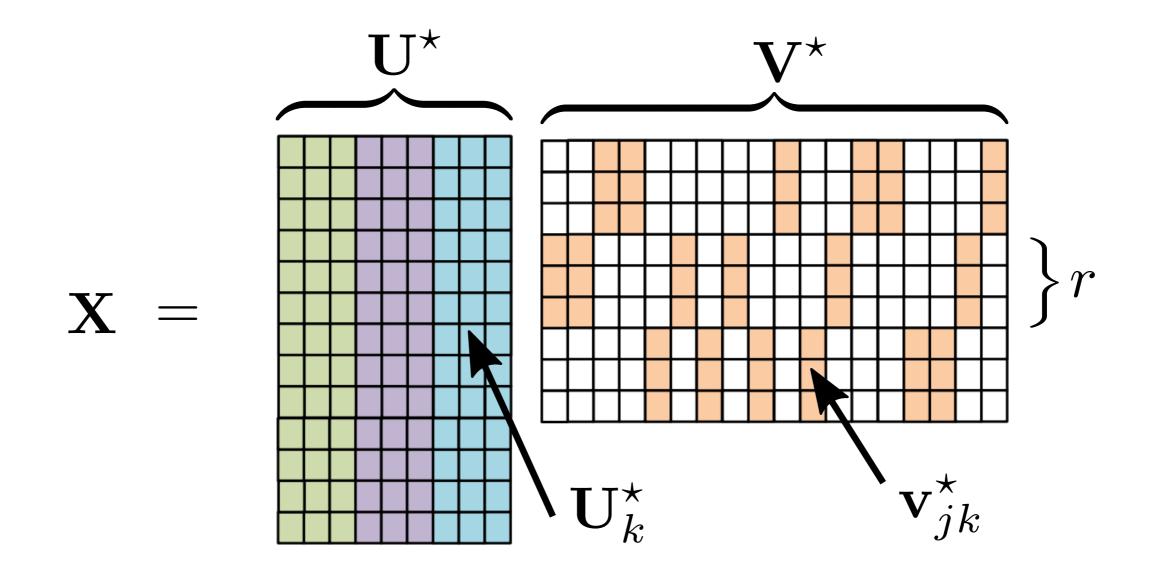
WOW, AMAZING PLEASE TELL ME MORE



Information-theoretic requirements P.-A., Nowak, 2016

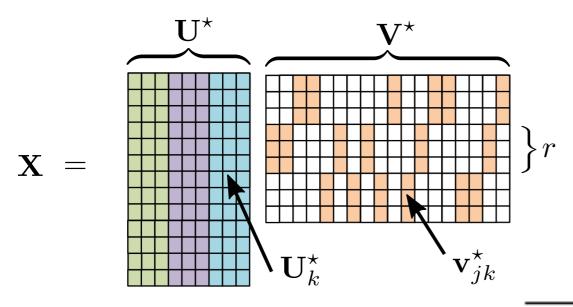






State-of-the-art Algorithms

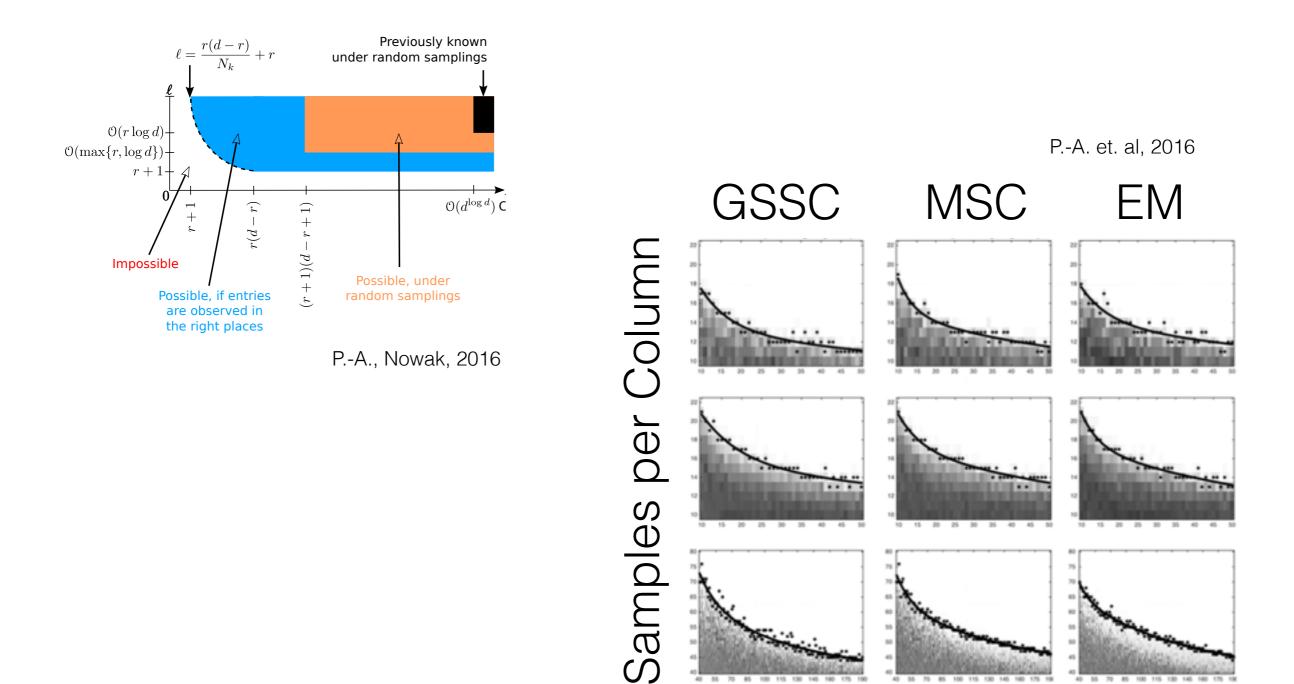
P.-A. et. al, 2016



Algorithm 1: Group-Sparse Subspace Clustering

Input:
$$\mathbf{X}_{\Omega}, K, r, \lambda$$
.
Initialize $\widehat{\mathbf{U}} \in \mathbb{R}^{d \times Kr}$ (e.g., using SSC-EWZF).
repeat
 $\widehat{\mathbf{V}} = \operatorname*{arg\,min}_{\mathbf{V}} \| \mathbf{\Omega} (\mathbf{X} - \widehat{\mathbf{U}}\mathbf{V}) \|_{F}^{2} + \lambda \sum_{j,k=1}^{N,K} \| \mathbf{v}_{jk} \|_{2}.$
 $\widehat{\mathbf{U}} = \operatorname*{arg\,min}_{\mathbf{U} : \| \mathbf{U} \|_{F} \le 1} \| \mathbf{\Omega} (\mathbf{X} - \mathbf{U}\widehat{\mathbf{V}}) \|_{F}.$
until convergence;
Output: $\widehat{\mathbf{U}}, \widehat{\mathbf{V}}.$

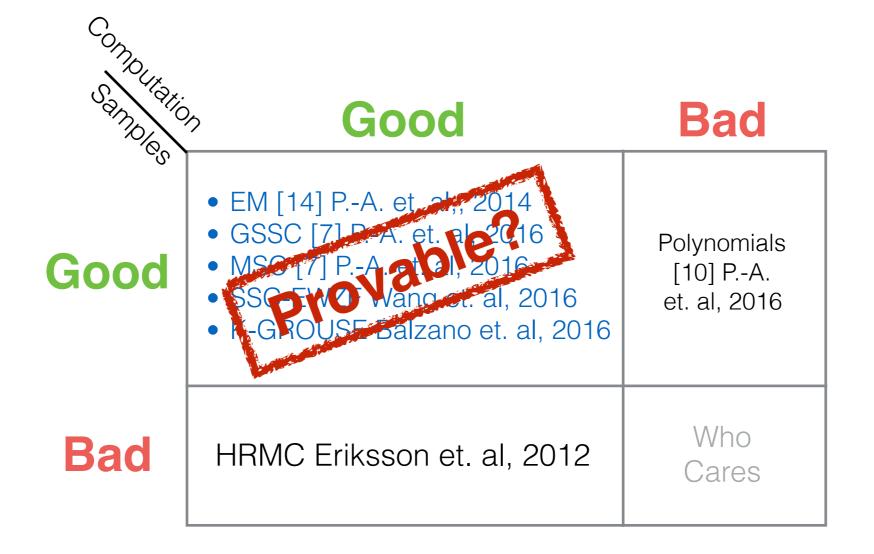
State-of-the-art Algorithms P.-A. et. al, 2016

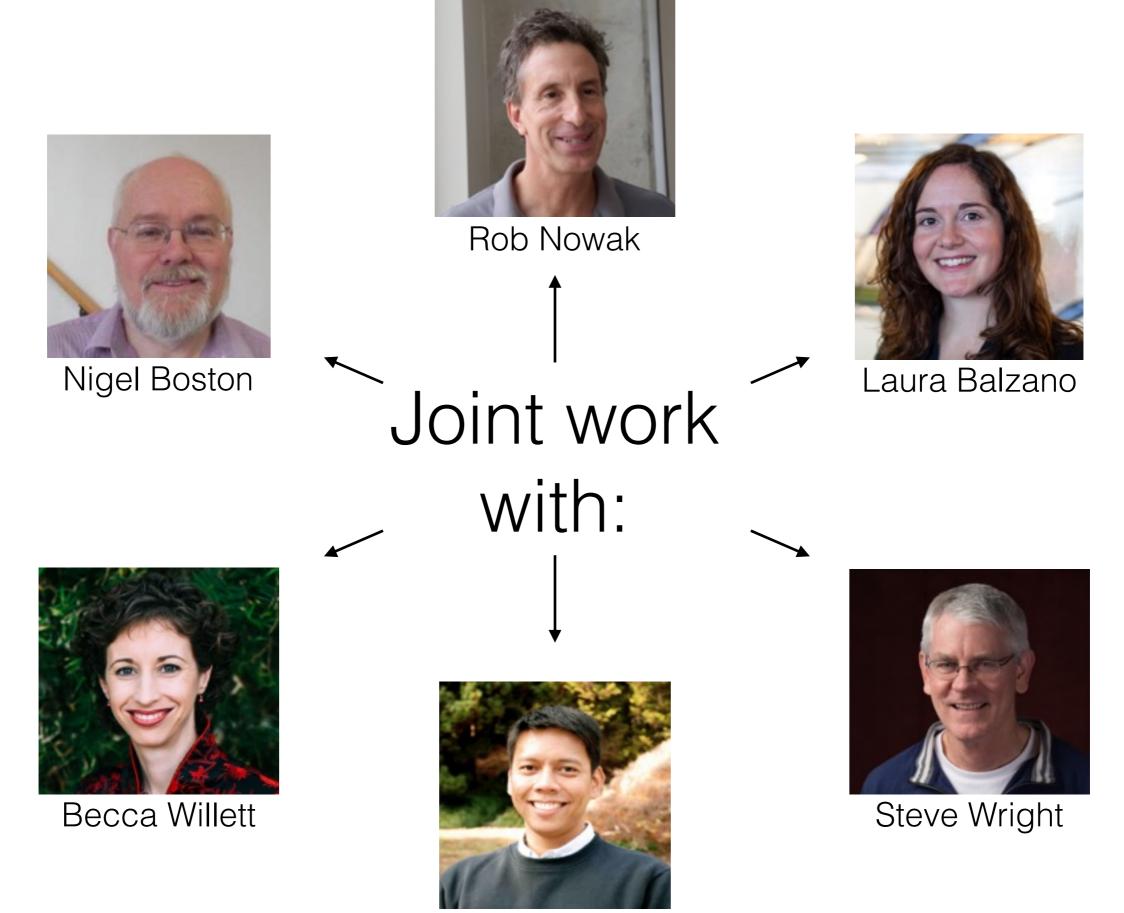


Number of Columns

Theory matches Practice

Computation Samples	> Good	Bad
Good	 EM [14] PA. et. al, 2014 GSSC [7] PA. et. al, 2016 MSC [7] PA. et. al, 2016 SSC-EWZF Wang et. al, 2016 K-GROUSE Balzano et. al, 2016 	Polynomials [10] PA. et. al, 2016
Bad	HRMC Eriksson et. al, 2012	Who Cares





Roummel Marcia

Thank you!