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*PCA: Finds Subspace that Explains Data.
e Complication: corrupted entries in EVERY column!

e Al L columns are outliers!
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Theorem (Pimentel, Boston, Nowak, ISIT. 2015)

A subspace can be recovered from N = d — r canonical
projections if and only if every subset of n projections
involves at least n + r coordinates.
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A subspace can be recovered from N = d — r canonical
projections if and only if every subset of n projections
involves at least n 4+ r coordinates.
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This tells me

Which projections | need to reconstruct the subspace.
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It we find the right projections,

we can find the subspace
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INn many cases, similar results
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RPCA-ALM (Lin et. al, 2011-2016)
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This work (Pimentel, Nowak, 2017)
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We can find the subspace,

and fast, unless
there are too many errors

Our main result in a nutshell

Pimentel, Nowak, AISTATS, 2017
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Take-nome Message

 New (algebraic) method for Robust PCA.

e Arbitrary (non-uniform, even adversarial) sparsity
patterns.

* No coherence assumptions.



Rob Nowak Nigel Boston

Joint work with:



Thank you!




