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In general

To answer this:
Totally different way to think about the problem

• Incoherence 
• Uniform 
• With high probability  
• Optimization

• Arbitrary 
• Deterministic 
• With probability 1 
• Algebraic/Geometric

X L S= +

?
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•PCA: Finds Subspace that Explains Data. 
•Complication: corrupted entries in EVERY column!
•ALL columns are outliers!
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A subspace can be recovered from N = d� r canonical
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involves at least n+ r coordinates.
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A subspace can be recovered from N = d� r canonical

projections if and only if every subset of n projections

involves at least n+ r coordinates.

Theorem (Pimentel, Boston, Nowak, ISIT, 2015)

1 2 63 4 5

d=9
r=3

N = d - r
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This tells me 
Which projections I need to reconstruct the subspace.
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Keep finding 
uncorrupted 
projections

If we find the right projections, 
we can find the subspace

Our Algorithm: R2PCA
(Ransac Robust PCA)
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In many cases, similar results

Original Frame This Work
(Pimentel, Nowak, 2017)

RPCA-ALM
RPCA-ALM (Lin et. al, 2011-2016)



In other cases, better

Original Frame RPCA-ALM
RPCA-ALM (Lin et. al, 2011-2016)

This Work
(Pimentel, Nowak, 2017)



In other cases, better

Original Frame RPCA-ALM
RPCA-ALM (Lin et. al, 2011-2016)

This Work
(Pimentel, Nowak, 2017)



Original Video RPCA-ALM
RPCA-ALM (Lin et. al, 2011-2016)

This Work
(Pimentel, Nowak, 2017)



Original Video RPCA-ALM
RPCA-ALM (Lin et. al, 2011-2016)

This Work
(Pimentel, Nowak, 2017)



Original Video RPCA-ALM
RPCA-ALM (Lin et. al, 2011-2016)

Coherent
Subspaces!!

This Work
(Pimentel, Nowak, 2017)
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Our main result in a nutshell

We can find the subspace, 
and fast, unless 

there are too many errors

Pimentel, Nowak, AISTATS, 2017



WOW, AMAZINGWOW, AMAZING

PLEASE TELL
ME MORE

PLEASE TELL
ME MORE
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Take-home Message

• New (algebraic) method for Robust PCA. 

• Arbitrary (non-uniform, even adversarial) sparsity 
patterns. 

• No coherence assumptions.



Rob Nowak Nigel Boston

Joint work with:



Thank you!


