Random Consensus Robust PCA

Daniel Pimentel-Alarcón & Robert Nowak

Wisconsin Institute for Discovery UNIVERSITY *of* WISCONSIN-MADISON Department of Electrical and Computer Engineering

AISTATS 2017

	A STATE OF A
Contract Contract	
S STREET, ST	
	The state of the second

Background segmentation

Background segmentation

Background segmentation

- [1] F. De La Torre and M. Black, A framework for robust subspace learning, International Journal of Computer Vision, 2003.
- [2] Q. Ke and T. Kanade, Robust L_1 norm factorization in the presence of outliers and missing data by alternative convex programming, IEEE Conference on Computer Vision and Pattern Recognition, 2005.
- [3] J. Wright, A. Ganesh, S. Rao, Y. Peng and Y. Ma, Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization, Advances in Neural Information Processing Systems, 2009.
- [4] H. Xu, C. Caramanis and S. Sanghavi, Robust PCA via outlier pursuit, Advances in Neural Information Processing Systems, 2010.
- [5] E. Candès, X. Li, Y. Ma and J. Wright, Robust principal component analysis?, Journal of the ACM, 2011.
- [6] V. Chandrasekaran, S. Sanghavi, P. Parrilo and A. Willsky, *Rank-sparsity* incoherence for matrix decomposition, SIAM Journal on Optimization, 2011.
- [7] L. Mackey, A. Talwalkar and M. Jordan, *Divide-and-conquer matrix factorization*, Advances in Neural Information Processing Systems, 2011.
- [8] M. Rahmani and G. Atia, A subspace learning approach for high dimensional matrix decomposition with efficient column/row sampling, International Conference on Machine Learning, 2016.
- [9] T. Bouwmans and E. Zahzah, *Robust PCA via principal component pursuit:* a review for a comparative evaluation in video surveillance, Computer Vision and Image Understanding, 2014.
- [10] Z. Lin, M. Chen, L. Wu, and Y. Ma, The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices, University of Illinois at Urbana-Champaign Technical Report, 2009.
- [11] Z. Lin, R. Liu and Z. Su, Linearized alternating direction method with adaptive penalty for low rank representation, Advances in Neural Information Processing Systems, 2011.
- [12] X. Yuan and J. Yang, Sparse and low-rank matrix decomposition via alternating direction methods, 2009.
- [13] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen and Y. Ma, Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix, Computational Advances in Multi-Sensor Adaptive Processing, 2009.
- [14] Y. Shen, Z. Wen, and Y. Zhang. Augmented Lagrangian Alternating Direction Method for Matrix Separation based on Low-Rank Factorization, Optimization Methods and Software, 2011.

minimize
$$\|\mathbf{L}\|_* + \lambda \|\mathbf{S}\|_1$$

subject to $\mathbf{X} = \mathbf{L} + \mathbf{S}$

- [1] F. De La Torre and M. Black, A framework for robust subspace learning, International Journal of Computer Vision, 2003.
- [2] Q. Ke and T. Kanade, Robust L_1 norm factorization in the presence of outliers and missing data by alternative convex programming, IEEE Conference on Computer Vision and Pattern Recognition, 2005.
- [3] J. Wright, A. Ganesh, S. Rao, Y. Peng and Y. Ma, Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization, Advances in Neural Information Processing Systems, 2009.
- [4] H. Xu, C. Caramanis and S. Sanghavi, Robust PCA via outlier pursuit, Advances in Neural Information Processing Systems, 2010.
- [5] E. Candès, X. Li, Y. Ma and J. Wright, Robust principal component analysis?, Journal of the ACM, 2011.
- [6] V. Chandrasekaran, S. Sanghavi, P. Parrilo and A. Willsky, *Rank-sparsity* incoherence for matrix decomposition, SIAM Journal on Optimization, 2011.
- [7] L. Mackey, A. Talwalkar and M. Jordan, *Divide-and-conquer matrix factorization*, Advances in Neural Information Processing Systems, 2011.
- [8] M. Rahmani and G. Atia, A subspace learning approach for high dimensional matrix decomposition with efficient column/row sampling, International Conference on Machine Learning, 2016.
- [9] T. Bouwmans and E. Zahzah, *Robust PCA via principal component pursuit:* a review for a comparative evaluation in video surveillance, Computer Vision and Image Understanding, 2014.
- [10] Z. Lin, M. Chen, L. Wu, and Y. Ma, The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices, University of Illinois at Urbana-Champaign Technical Report, 2009.
- [11] Z. Lin, R. Liu and Z. Su, Linearized alternating direction method with adaptive penalty for low rank representation, Advances in Neural Information Processing Systems, 2011.
- [12] X. Yuan and J. Yang, Sparse and low-rank matrix decomposition via alternating direction methods, 2009.
- [13] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen and Y. Ma, Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix, Computational Advances in Multi-Sensor Adaptive Processing, 2009.
- [14] Y. Shen, Z. Wen, and Y. Zhang. Augmented Lagrangian Alternating Direction Method for Matrix Separation based on Low-Rank Factorization, Optimization Methods and Software, 2011.

- [1] F. De La Torre and M. Black, A framework for robust subspace learning, International Journal of Computer Vision, 2003.
- [2] Q. Ke and T. Kanade, Robust L_1 norm factorization in the presence of outliers and missing data by alternative convex programming, IEEE Conference on Computer Vision and Pattern Recognition, 2005.
- [3] J. Wright, A. Ganesh, S. Rao, Y. Peng and Y. Ma, Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization, Advances in Neural Information Processing Systems, 2009.
- [4] H. Xu, C. Caramanis and S. Sanghavi, Robust PCA via outlier pursuit, Advances in Neural Information Processing Systems, 2010.
- [5] E. Candès, X. Li, Y. Ma and J. Wright, Robust principal component analysis?, Journal of the ACM, 2011.
- [6] V. Chandrasekaran, S. Sanghavi, P. Parrilo and A. Willsky, *Rank-sparsity* incoherence for matrix decomposition, SIAM Journal on Optimization, 2011.
- [7] L. Mackey, A. Talwalkar and M. Jordan, *Divide-and-conquer matrix factorization*, Advances in Neural Information Processing Systems, 2011.
- [8] M. Rahmani and G. Atia, A subspace learning approach for high dimensional matrix decomposition with efficient column/row sampling, International Conference on Machine Learning, 2016.
- [9] T. Bouwmans and E. Zahzah, *Robust PCA via principal component pursuit:* a review for a comparative evaluation in video surveillance, Computer Vision and Image Understanding, 2014.
- [10] Z. Lin, M. Chen, L. Wu, and Y. Ma, The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices, University of Illinois at Urbana-Champaign Technical Report, 2009.
- [11] Z. Lin, R. Liu and Z. Su, Linearized alternating direction method with adaptive penalty for low rank representation, Advances in Neural Information Processing Systems, 2011.
- [12] X. Yuan and J. Yang, Sparse and low-rank matrix decomposition via alternating direction methods, 2009.
- [13] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen and Y. Ma, Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix, Computational Advances in Multi-Sensor Adaptive Processing, 2009.
- [14] Y. Shen, Z. Wen, and Y. Zhang. Augmented Lagrangian Alternating Direction Method for Matrix Separation based on Low-Rank Factorization, Optimization Methods and Software, 2011.

- [1] F. De La Torre and M. Black, A framework for robust subspace learning, International Journal of Computer Vision, 2003.
- [2] Q. Ke and T. Kanade, Robust L_1 norm factorization in the presence of outliers and missing data by alternative convex programming, IEEE Conference on Computer Vision and Pattern Recognition, 2005.
- [3] J. Wright, A. Ganesh, S. Rao, Y. Peng and Y. Ma, Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization, Advances in Neural Information Processing Systems, 2009.
- [4] H. Xu, C. Caramanis and S. Sanghavi, *Robust PCA via outlier pursuit*, Advances in Neural Information Processing Systems, 2010.
- [5] E. Candès, X. Li, Y. Ma and J. Wright, *Robust principal component anal*ysis?, Journal of the ACM, 2011.
- [6] V. Chandrasekaran, S. Sanghavi, P. Parrilo and A. Willsky, *Rank-sparsity* incoherence for matrix decomposition, SIAM Journal on Optimization, 2011.
- [7] L. Mackey, A. Talwalkar and M. Jordan, *Divide-and-conquer matrix factorization*, Advances in Neural Information Processing Systems, 2011.
- [8] M. Rahmani and G. Atia, A subspace learning approach for high dimensional matrix decomposition with efficient column/row sampling, International Conference on Machine Learning, 2016.
- [9] T. Bouwmans and E. Zahzah, *Robust PCA via principal component pursuit:* a review for a comparative evaluation in video surveillance, Computer Vision and Image Understanding, 2014.
- [10] Z. Lin, M. Chen, L. Wu, and Y. Ma, The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices, University of Illinois at Urbana-Champaign Technical Report, 2009.
- [11] Z. Lin, R. Liu and Z. Su, Linearized alternating direction method with adaptive penalty for low rank representation, Advances in Neural Information Processing Systems, 2011.
- [12] X. Yuan and J. Yang, Sparse and low-rank matrix decomposition via alternating direction methods, 2009.
- [13] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen and Y. Ma, Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix, Computational Advances in Multi-Sensor Adaptive Processing, 2009.
- [14] Y. Shen, Z. Wen, and Y. Zhang. Augmented Lagrangian Alternating Direction Method for Matrix Separation based on Low-Rank Factorization, Optimization Methods and Software, 2011.

- [1] F. De La Torre and M. Black, A framework for robust subspace learning, International Journal of Computer Vision, 2003.
- [2] Q. Ke and T. Kanade, Robust L_1 norm factorization in the presence of outliers and missing data by alternative convex programming, IEEE Conference on Computer Vision and Pattern Recognition, 2005.
- [3] J. Wright, A. Ganesh, S. Rao, Y. Peng and Y. Ma, Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization, Advances in Neural Information Processing Systems, 2009.
- [4] H. Xu, C. Caramanis and S. Sanghavi, *Robust PCA via outlier pursuit*, Advances in Neural Information Processing Systems, 2010.
- [5] E. Candès, X. Li, Y. Ma and J. Wright, *Robust principal component anal*ysis?, Journal of the ACM, 2011.
- [6] V. Chandrasekaran, S. Sanghavi, P. Parrilo and A. Willsky, *Rank-sparsity* incoherence for matrix decomposition, SIAM Journal on Optimization, 2011.
- [7] L. Mackey, A. Talwalkar and M. Jordan, *Divide-and-conquer matrix factorization*, Advances in Neural Information Processing Systems, 2011.
- [8] M. Rahmani and G. Atia, A subspace learning approach for high dimensional matrix decomposition with efficient column/row sampling, International Conference on Machine Learning, 2016.
- [9] T. Bouwmans and E. Zahzah, *Robust PCA via principal component pursuit:* a review for a comparative evaluation in video surveillance, Computer Vision and Image Understanding, 2014.
- [10] Z. Lin, M. Chen, L. Wu, and Y. Ma, The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices, University of Illinois at Urbana-Champaign Technical Report, 2009.
- [11] Z. Lin, R. Liu and Z. Su, Linearized alternating direction method with adaptive penalty for low rank representation, Advances in Neural Information Processing Systems, 2011.
- [12] X. Yuan and J. Yang, Sparse and low-rank matrix decomposition via alternating direction methods, 2009.
- [13] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen and Y. Ma, Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix, Computational Advances in Multi-Sensor Adaptive Processing, 2009.
- [14] Y. Shen, Z. Wen, and Y. Zhang. Augmented Lagrangian Alternating Direction Method for Matrix Separation based on Low-Rank Factorization, Optimization Methods and Software, 2011.

- [1] F. De La Torre and M. Black, A framework for robust subspace learning, International Journal of Computer Vision, 2003.
- [2] Q. Ke and T. Kanade, Robust L_1 norm factorization in the presence of outliers and missing data by alternative convex programming, IEEE Conference on Computer Vision and Pattern Recognition, 2005.
- [3] J. Wright, A. Ganesh, S. Rao, Y. Peng and Y. Ma, Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization, Advances in Neural Information Processing Systems, 2009.
- [4] H. Xu, C. Caramanis and S. Sanghavi, *Robust PCA via outlier pursuit*, Advances in Neural Information Processing Systems, 2010.
- [5] E. Candès, X. Li, Y. Ma and J. Wright, *Robust principal component anal*ysis?, Journal of the ACM, 2011.
- [6] V. Chandrasekaran, S. Sanghavi, P. Parrilo and A. Willsky, *Rank-sparsity* incoherence for matrix decomposition, SIAM Journal on Optimization, 2011.
- [7] L. Mackey, A. Talwalkar and M. Jordan, *Divide-and-conquer matrix factorization*, Advances in Neural Information Processing Systems, 2011.
- [8] M. Rahmani and G. Atia, A subspace learning approach for high dimensional matrix decomposition with efficient column/row sampling, International Conference on Machine Learning, 2016.
- [9] T. Bouwmans and E. Zahzah, *Robust PCA via principal component pursuit:* a review for a comparative evaluation in video surveillance, Computer Vision and Image Understanding, 2014.
- [10] Z. Lin, M. Chen, L. Wu, and Y. Ma, The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices, University of Illinois at Urbana-Champaign Technical Report, 2009.
- [11] Z. Lin, R. Liu and Z. Su, Linearized alternating direction method with adaptive penalty for low rank representation, Advances in Neural Information Processing Systems, 2011.
- [12] X. Yuan and J. Yang, Sparse and low-rank matrix decomposition via alternating direction methods, 2009.
- [13] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen and Y. Ma, Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix, Computational Advances in Multi-Sensor Adaptive Processing, 2009.
- [14] Y. Shen, Z. Wen, and Y. Zhang. Augmented Lagrangian Alternating Direction Method for Matrix Separation based on Low-Rank Factorization, Optimization Methods and Software, 2011.

- [1] F. De La Torre and M. Black, A framework for robust subspace learning, International Journal of Computer Vision, 2003.
- [2] Q. Ke and T. Kanade, Robust L_1 norm factorization in the presence of outliers and missing data by alternative convex programming, IEEE Conference on Computer Vision and Pattern Recognition, 2005.
- [3] J. Wright, A. Ganesh, S. Rao, Y. Peng and Y. Ma, Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization, Advances in Neural Information Processing Systems, 2009.
- [4] H. Xu, C. Caramanis and S. Sanghavi, *Robust PCA via outlier pursuit*, Advances in Neural Information Processing Systems, 2010.
- [5] E. Candès, X. Li, Y. Ma and J. Wright, *Robust principal component anal*ysis?, Journal of the ACM, 2011.
- [6] V. Chandrasekaran, S. Sanghavi, P. Parrilo and A. Willsky, *Rank-sparsity* incoherence for matrix decomposition, SIAM Journal on Optimization, 2011.
- [7] L. Mackey, A. Talwalkar and M. Jordan, *Divide-and-conquer matrix factorization*, Advances in Neural Information Processing Systems, 2011.
- [8] M. Rahmani and G. Atia, A subspace learning approach for high dimensional matrix decomposition with efficient column/row sampling, International Conference on Machine Learning, 2016.
- [9] T. Bouwmans and E. Zahzah, *Robust PCA via principal component pursuit:* a review for a comparative evaluation in video surveillance, Computer Vision and Image Understanding, 2014.
- [10] Z. Lin, M. Chen, L. Wu, and Y. Ma, The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices, University of Illinois at Urbana-Champaign Technical Report, 2009.
- [11] Z. Lin, R. Liu and Z. Su, Linearized alternating direction method with adaptive penalty for low rank representation, Advances in Neural Information Processing Systems, 2011.
- [12] X. Yuan and J. Yang, Sparse and low-rank matrix decomposition via alternating direction methods, 2009.
- [13] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen and Y. Ma, Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix, Computational Advances in Multi-Sensor Adaptive Processing, 2009.
- [14] Y. Shen, Z. Wen, and Y. Zhang. Augmented Lagrangian Alternating Direction Method for Matrix Separation based on Low-Rank Factorization, Optimization Methods and Software, 2011.

In general

In general

To answer this:

Totally different way to think about the problem

- Incoherence
- Uniform
- With high probability
 With probability 1
- Optimization

- Arbitrary
- Deterministic
- Algebraic/Geometric

THE FOLLOWING **PREVIEW** HAS BEEN APPROVED FOR **ALL AUDIENCES** BY THE MOTION PICTURE ASSOCIATION OF AMERICA INC.

THE FILM ADVERTISED HAS BEEN RATED

RESTRICTED

UNDER 17 REQUIRES ACCOMPANYING PARENT OR GUARDIAN

GEOMETRY

www.filmratings.com

www.mpaa.org

•**PCA**: Finds Subspace that Explains Data.

•**PCA**: Finds Subspace that Explains Data.

- •**PCA**: Finds Subspace that Explains Data.
- •**Complication**: corrupted entries in EVERY column!

- •**PCA**: Finds Subspace that Explains Data.
- •**Complication**: corrupted entries in EVERY column!

- •**PCA**: Finds Subspace that Explains Data.
- •**Complication**: corrupted entries in EVERY column!

- •**PCA**: Finds Subspace that Explains Data.
- •**Complication**: corrupted entries in EVERY column!

- •**PCA**: Finds Subspace that Explains Data.
- •**Complication**: corrupted entries in EVERY column!

- •**PCA**: Finds Subspace that Explains Data.
- •**Complication**: corrupted entries in EVERY column!
- •ALL columns are outliers!

• Take a few columns at a time (as RANSAC)

• Take a few columns at a time (as RANSAC)

- Take a few columns at a time (as RANSAC)
- Take a few coordinates at a time (projection)

- Take a few columns at a time (as RANSAC)
- Take a few coordinates at a time (projection)

- Take a few columns at a time (as RANSAC)
- Take a few coordinates at a time (projection)

- Take a few columns at a time (as RANSAC)
- Take a few coordinates at a time (projection)

- Take a few columns at a time (as RANSAC)
- Take a few coordinates at a time (projection)

- Take a few columns at a time (as RANSAC)
- Take a few coordinates at a time (projection)

- Take a few columns at a time (as RANSAC)
- Take a few coordinates at a time (projection)

- Take a few columns at a time (as RANSAC)
- Take a few coordinates at a time (projection)

- Take a few columns at a time (as RANSAC)
- Take a few coordinates at a time (projection)

- Take a few columns at a time (as RANSAC)
- Take a few coordinates at a time (projection)

- Take a few columns at a time (as RANSAC)
- Take a few coordinates at a time (projection)

- Take a few columns at a time (as RANSAC)
- Take a few coordinates at a time (projection)

- Take a few columns at a time (as RANSAC)
- Take a few coordinates at a time (projection)

Theorem (Pimentel, Boston, Nowak, ISIT, 2015)

A subspace can be recovered from N = d - r canonical projections if and only if every subset of n projections involves at least n + r coordinates.

Theorem (Pimentel, Boston, Nowak, ISIT, 2015)

A subspace can be recovered from N = d - r canonical projections if and only if every subset of n projections involves at least n + r coordinates.

This tells me

Which projections I need to reconstruct the subspace.

Keep finding uncorrupted projections

Keep finding uncorrupted projections

Keep finding uncorrupted projections

Our Algorithm: R2PCA

Keep finding uncorrupted projections

If we find *the right projections*, we can find the subspace

Background segmentation

Original Frame

This Work (Pimentel, Nowak, 2017)

In many cases, similar results

Original Frame

In other cases, better

Original Frame

In other cases, better

Original Video

Original Video

Original Video

Performance Analysis

Performance Analysis

Few errors

Many errors

Performance Analysis

Our main result in a nutshell

Pimentel, Nowak, AISTATS, 2017

WOW, AMAZING

PLEASE TELL ME MORE

Columns lie in S^* generically.

Columns lie in S^* generically.

Columns lie in S^* generically.

Take-home Message

- New (algebraic) method for Robust PCA.
- Arbitrary (non-uniform, even adversarial) sparsity patterns.
- No coherence assumptions.

Rob Nowak

Nigel Boston

Joint work with:

Thank you!

