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10.1 Introduction

In previous lectures we have studied several image transformations. For example, the Hough transform
encodes the probability that each possible line (or other shape) is contained in an image:

H7→
X H(X)

Another example is the Fourier transform, which represents an image in terms of complex exponential (or
equivalently, sine and cosine) basis functions:

+= +… +c1 c2 cN

x

F(x)

When applied to an image (2-dimensional signal) we get coefficients in two dimensions:
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F7→
X F(X)

Similar to the Fourier transform, wavelet transforms represent signals (images) in terms of other basis
functions. There are several types of wavelet transforms, each with different mother functions. Examples
include the Morlet, the Mexican Hat, or the Daubechies mother functions:

Morlet Mexican Hat Daubechies

The basis functions of each wavelet type are given by frequency scalings (α) and time-shifts (τ) of the mother
function ψ(t):

Mother function ψ(t) Scaling ψ(t/α) Time-shift ψ(t− τ)

The wavelet transform represents a signal in terms of these bases:

+= +… +

x

W(1, 1) W(2, 1) W(N, N)

10.2 Continuous Wavelet Transform

More formally, if ψ(t) is the wavelet mother function, then the wavelet transform of a function f(t) is given
by:

W(α, τ) =

∫ ∞
−∞

f(t)
1√
α
ψ∗(

t− τ
α

)dt,
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Notice that in contrast to the Fourier transform, which only has one parameter (frequency), the wavelet
transform has two parameters: a scaling α (which works as proxy of the frequency), and a time-shift param-
eter τ . The inverse wavelet transform is defined as:

f(t) =
1

Cψ

∫ ∞
0

∫ ∞
−∞

W(α, τ)
1√
α
ψ(
t− τ
α

)dτ
dα

α2
,

where

Cψ :=

∫ ∞
0

|Ψ(w)|2

w
dw,

and Ψ(w) is the Fourier transform of ψ(t). If you want to know more about the wavelet transform, I
recommend A Tutorial of the Wavelet Transform, by Liu Chun-Lin, available here: http://disp.ee.ntu.

edu.tw/tutorial/WaveletTutorial.pdf

10.3 Discrete Wavelet Transform

The main idea of the discrete wavelet transform is to decompose a function x ∈ RN in terms of two orthogonal
sets of basis functions: {φα0,τ [n]}k∈Z and {ψα,τ [n]}(α,τ)∈Z2,α≥α0

, where

φα0,τ [n] :=
1
√
α0
φ

[
n− τ
α

]
, ψα,τ [n] :=

1√
α
φ

[
n− τ
α

]
.

As before, each family of wavelet transform (Morlet, Daubechies, etc.) has a pair of mother functions
(φ, psi). The coefficients w.r.t. φ are called the approximation coefficients, and the coefficients w.r.t. ψ are
called detail coefficients. Intuitively, the discrete wavelet transform splits x into approximation coefficients
that give a low-definition approximation of x, and detail coefficients that give the high-definition details.
These coefficients are given by:

Wφ[α0, τ ] =
1√
N

∑
n

x[n]φα0,τ [n],

Wψ[α, τ ] =
1√
N

∑
n

x[n]ψα0,τ [n], α > α0.

x

…

…

(aka approximation)

(aka detail)

(aka approximation)

(aka detail)

W�(x)

W (x)

W�(W�(x))

W (W�(x))

http://disp.ee.ntu.edu.tw/tutorial/WaveletTutorial.pdf
http://disp.ee.ntu.edu.tw/tutorial/WaveletTutorial.pdf
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This wavelet transform can be easily computed in Matlab using the dwt function, which receives as parameters
the function x whose transform we want to compute, the wavelet family (e.g., ’db2’ for the Daubechies
mother function), and returns the approximation and detail coefficients:

1 [CA,CD] = dwt(x,'db2');

10.4 Wavelet Transform in Practice

The wavelet transform is a powerful compression tool. The main reason is that for a lot of signals, wavelet
detail coefficients tend to be sparse. A typical approach is to recursively compute the wavelet transform on
the approximation component of x. That is, split x into its detail and approximation components Wψ(x)
and Wφ(x), then recursively split Wφ(x) into new approximation and detail components Wψ(Wφ(x)) and
Wφ(Wφ(x)), and so on.

x

…

…

(aka approximation)

(aka detail)

(aka approximation)

(aka detail)

W�(x)

W (x)

W�(W�(x))

W (W�(x))

At each splitting step, the signal size is reduced in half. For images, at each level we split into horizontal,
vertical, and diagonal details, and one global approximation:

dwt
'db2'
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Wavelet transforms of images are often depicted stacking all these components:

Original Image Level-1 W transform Level-2 W transform

Notice that all the detail coefficients are very sparse. For example, here are the histograms of the level-1
wavelet details of the previous image:

Horizontal Details Vertical Details Diagonal Details

Consequently, one can ignore the near-zero coefficients, and store the wavelet transform very efficiently,
resulting in powerful compression.

The process of ignoring the near-zero coefficients is equivalent to thresholding, typically done in two ways
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Hard-thresholding

xλ :=

{
x if |x| > λ
0 otherwise.

Notice that the hard threshold operator can also be written as

xλ = x� 1{|x|>λ},

where 1 is the indicator function, and · denotes the Hadamard (point-wise) product.

Soft-Thresholding

xλ :=

x− λ if x > λ
x+ λ if x < −λ

0 otherwise.

Notice that the soft threshold operator can also be written as:

xλ = x�max

(
1− λ

|x|
, 0

)
.

Empirically people have observed that the soft-threshold tends to produce smoother results, while the hard-
threshold tends to keep more contrast.

Universal Threshold

The trick is usually how to chose the threshold λ. Luckily, there are some rules of thumb, like the so-called
universal threshold:

λ? =
2 logN ·median(|Wφ(x)|)

0.675
,

where N is the size of x, and Wφ(x) is the set of level-1 detail coefficients of x.
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10.5 Denoising

Besides compression, thresholding small wavelet coefficients can also work as a noise reduction tool. For
example, consider the following noiseless and noisy signal:

Noiseless Signal Noisy Signal

To denoise the later, we can compute its wavelet decomposition:

Approximation Detail

We can threshold the detail coefficients using the universal threshold λ?, and invert the wavelet transform
to obtain the following denoised signals:

Hard-Thresholding Soft-Thresholding

Notice that while not ideal, these signals are less noisy than the initial signal. This denoising procedure can
be further improved with higher-level wavelet transforms.

For images we can do something similar. Consider the following image:

X
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We can compute its wavelet transform:

W(X)

Notice that the details are very sparse, and we can threshold them (universal threshold λ? indicated in red)

Horizontal Details Vertical Details Diagonal Details

Here are the thresholded details:

Hard-Thresholding Soft-Thresholding

After inverting with the thresholded coefficients, we obtain the following denoised results:

Hard-Thresholding Soft-Thresholding

Notice that while not ideal, these images are less noisy than the initial image. This denoising procedure can
be further improved with higher-level wavelet transforms.
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