
BMI/CS 567: Medical Image Analysis Spring 2020

Week 11: Neural Networks

Instructor: Daniel L. Pimentel-Alarcón c© Copyright 2020

GO GREEN. AVOID PRINTING, OR PRINT 2-SIDED MULTI-PAGE.

11.1 Introduction

Neural networks are arguably the main reason why Machine Learning is making a big splash. Similar to
logistic regression and random forests, their main purpose is prediction/classification. Classical applications
of neural networks include:

1. Image classification. For example, digit classification (determining the digit contained in an image),
or medical diagnostics (deciding whether a patient is healthy or not based on an MRI).

2. Natural language processing. For example, interpreting voice commands, like Siri and Alexa do.

3. Stock market prediction.

Each of these problems can be rephrased mathematically as finding an unknown (and highly complex)
function f?, such that given certain data x, f?(x) gives the desired classification/prediction. In our examples:

1. Image classification. In digit classification x is a vectorized image of a digit, and f?(x) ∈ {0, . . . , 9}
is the digit depicted in such image. For the images x1,x2, . . . ,x5 in Figure 11.1, f?(x1) = 5, f?(x2) =
0, . . . , f?(x5) = 9. In medical diagnostics, x could be a vectorized MRI, as in Figure 11.2, and
f?(x) ∈ {0, 1} would be the diagnostic, 0 corresponding to healthy, and 1 to Alzheimers.

Figure 11.1: Digit images from the MNIST dataset. The goal is to automatically determine the digit contained in each image,
in this case {5, 0, 4, 1, 9}.

Which one has Alzheimer?
Problem: Few Experts

Which one has Alzheimer?
Problem: Few Experts

Figure 11.2: Two brain MRIs. The goal is to automatically determine whether they are healthy or not.

11-1



Week 11: Neural Networks 11-2

2. Natural language processing. Here x is a vector containing the values in a voice signal, as in Figure
11.3, and f?(x) is the interpretation, in this case “turn off the t.v.”.

Figure 11.3: Voice signal corresponding to the command “turn off the t.v.”.

3. Stock market prediction. Here x could be a sequence of stock market prices at times t = 1, . . . ,T,
and f?(x) could be the prediction of such stock market price at time T + 1.

All of these tasks can be tremendously challenging. For example, whether an image contains a 0, or a 1, or
any other digit, depends not only on the values of isolated pixels, but on the way that pixels interact with
one an other in complex manners.

The main idea behind Neural Networks is to use a sequence of simpler functions that interact with one
another in a networked way, so that combined, they approximate f? with arbitrary precision.

11.2 Intuition

To build some intuition, suppose we want to estimate the following function f?:

One option is to use a Riemann-type approximation f̂ =
∑L

`=1 g` where g` are step functions of the form:

g`(x) =

{
w` if β(`− 1) ≤ x < β`
0 otherwise.

Here w` indicates the height of f? in the `th interval [β(`− 1), β`). This type of approximation would look
something like:



Week 11: Neural Networks 11-3

Notice that the parameters w1, . . . ,w`, together with the interval width β determine f̂ . Unfortunately,
estimating this type of function would require to observe at least one sample x on each interval [β(`−1), β`).
For the figure above, this would require at least 21 samples. This may not sound like much. However, as
we move to higher dimensions, this number scales exponentially, and quickly becomes prohibitively large:
if f? is a multivariate function of x ∈ Rd (instead of a single variable function of x ∈ R), then a similar
approximation would require 21d samples. With d as little as 10, this would mean more than 1 trillion
samples. As we will see, in most of the big data applications that we are interest, d is often in the order of
hundreds, and often thousands or millions, whence this approach is completely infeasible.

Another option is to allow varying size intervals, such that

g`(x) =

{
w` if β`−1 ≤ x < β`
0 otherwise.

In this case, the parameters are the weights w1, . . . ,wL and the interval boundaries β0, . . . , βL. This type of
approximation would look more like:

and will potentially require far fewer samples. The downside is that now f̂ may be quite inaccurate (on top
of being discontinuous). To address this, we can make each g` a simple nonlinear yet continuous function.
For example, a sigmoid:

σ(x) =
1

1 + e−x
, (11.1)

which looks as follows:



Week 11: Neural Networks 11-4

Notice that σ(wx−β) shifts the function by β, and squeezes the function by w. So if we let g(x) = σ(wx−β),
and we choose the right parameters w and β, and add a bunch of these functions, then we can approximate
f? much more accurately. Moreover, if f? is a function of more than one variable, say of a vector x ∈ Rd,
then we can generalize g in a very natural way:

g(x) = σ(wTx− β), (11.2)

where now w ∈ Rd is a parameter vector. Just as the step function is the building block of the Riemann-type
approximation above, this type of function g is precisely the building block (often called neuron) of a neural
network, usually depicted as follows:

The main insight of a neural network is that by adding a bunch of these building blocks, one can approximate
f? with arbitrary accuracy. For example, with two neurons we would obtain the following:

f̂(x) = g1(x) + g2(x),

which we can depict as follows:

There is no reason why we cannot include weights to each g, nor a final shift, to obtain:

f̂(x) = w1g1(x) + w2g2(x)− β =

[
w1 w2

] [
g1(x)
g2(x)

]
− β, =: wTg(x)− β,

where w1, w2, and β are new parameters. This function would be represented like:



Week 11: Neural Networks 11-5

There is no reason to stop there. We can add more neurons, and more layers to obtain more powerful
networks, like the following, capable of approximating more complex functions:

Here we use L to denote the number of layers (in the figure above L = 6), and n` to denote the number
of neurons in the `th layer. For ` = 2, 3, . . . ,L, W` ∈ Rn`×n`−1 is the matrix formed by transposing and
stacking the weight vectors of the n` neurons in the `th layer, and β` ∈ Rn` is the vector containing the
shifting coefficients (often called bias coefficients) of the neurons in the `th layer. This way the output at the
second layer is given by:

g2(x) = σ(W2x− β2),

and for ` = 3, . . . ,L, the output at the `th layer is given by:

g`(x) = σ(W`g`−1(x)− β`),

where gL(x) is the final output of the network, also denoted as:

f̂(x) := σ(WLσ(WL−1 · · · σ(W3σ(W2x− β2)− β3) · · · − βL−1)− βL). (11.3)

Notice that f̂(x) ∈ RnL may be a vector (if nL > 1), as opposed to a scalar (if nL = 1), and so neural
networks allow to infer vector functions.

Going back to estimating the function above, we can construct the following network:



Week 11: Neural Networks 11-6

Depending on the parameters {W`,β`}L`=2 that we choose, may produce functions like the following:

An approximation of the function above with a neural network like this would look like:

The trick lies in finding the parameters {W`,β`}L`=2 that produce such approximation.



Week 11: Neural Networks 11-7

11.3 Identifying the Right Parameters (aka Training)

As discussed before, with the right parameters {W`,β`}L`=2, the function f̂(x) in (11.3) can approximate

any function f?(x) with arbitrary accuracy. The challenge is to find the right parameters {W`,β`}L`=2. The
process of finding such parameters is often known as training.

Recall that we do not know f?. However, we do have training data. More precisely, we have N samples
x1,x2, . . . ,xN, as well as their response y1,y2, . . . ,yN. For example, if we were studying diabetes, xi could
contain demographic information about the ith person in our study, and yi could be a binary variable
indicating whether this person is diabetic or not. In other words, we know that f?(xi) = yi for every
i = 1, 2, . . . ,N.

Intuitively, this means that we don’t get to see all of f?, but we get to see N snapshots of f? at points xi:

Our goal is to exploit this information to find the parameters {W`,β`}L`=2 such that f̂ ≈ f?, such that the
function (network) can reproduce the response y whenever a new vector x is fed to the function (network).
This can be done by minimizing the error over all training data (often called cost function) between the
network’s prediction f̂(xi) and its corresponding observation yi. Mathematically, we can achieve this by
solving the following optimization

min
{W`,β`}L`=2

N∑
i=1

‖yi − f̂(xi)‖2. (11.4)

The most widely used technique to solve (11.4) is through stochastic gradient descent and backpropagation.

11.4 Gradient Descent

One often wants to find the minimizer of a cost function c(W), that is, the value W? such that c(W?) ≤ c(W)
for every W in the domain of c. If c is convex and simple enough, W? can be determined using our elemental
calculus recipe:

1. Take derivative of c(W)

2. Set derivative to zero, and solve for the minimizer.



Week 11: Neural Networks 11-8

Example 11.1. Consider c(w) = (w + 5)2 + 3. We can follow our recipe to find its minimizer:

1. The derivative of c is ∇c(w) = 2(w + 5).

2. Setting the derivative to zero and solving for w we obtain:

2(w + 5) = 0

w = −5.

Since c is convex (can you show this?), we conclude that its minimizer is w? = −5, as depicted below:

Some functions, however, are either not convex, or too complex that we cannot solve for W in step 2. For
example, can you compute the gradient of (11.3), set to zero, and solve for W?

For cases where our calculus 101 recipe does not work, we use optimization, which is the field of mathematics
that deals with finding minimums (and maximums). In particular, we will use one of the most elemental
tools of optimization: gradient descent.

The setting is is this: you have a function c(W). You want to find its minimum. You cannot solve for it
directly using the derivative trick, so what can you do? You can test the value of c for different values of W.
For example, you can test c(0), then maybe c(1), then maybe c(−1), then maybe c(1.5), and so on, until
you find the minimizer. Of course, depending on the domain of c, there could be infinitely many options, so
testing them all would be infeasible.

As the name suggests, the main idea of gradient descent is to test some initial value W0 (for example 0),
and iteratively use the gradient (another name for derivative) to determine which value of W to test next,
such that each new value Wt+1 produces a lower value for c, until we find the minimum. The main intuition
is that the gradient ∇c(W) tells us the slope of c at W. More precisely, if c is a function of a matrix
W ∈ Rm×n, then the gradient ∇c(W) ∈ Rm×n gives the slope of c in each of the m× n components of W`.
For each component (see Figure 11.4 to build some intuition):

• If this slope is positive, then we know that c is increasing around W, and we should try a smaller value
of W, say Wt+1 = Wt − η, where η is often referred to as step-size.

• If the slope is negative, then we know that c is decreasing, and we should try a larger value of W, say
Wt+1 = Wt + η.

Both of these insights can be summarized multiplying the step-size by the gradient: Wt+1 = Wt−η∇c(Wt).
Hence gradient descent can be summarized as in Algorithm 1.



Week 11: Neural Networks 11-9

Figure 11.4: Start at some point w0. If the gradient is positive (left figure), try a smaller value of w, say w1 = w0 + η. If the
gradient is negative (right figure), try a larger value of w, say w1 = w0 − η. Repeat this until convergence.

Algorithm 1: Gradient Descent

Input: Function c, step-size parameter η > 0.
Initialize W0. For example, W0 = 0.
Repeat until convergence: Wt+1 = Wt − η∇c(Wt).
Output: W? = Wt.

11.4.1 Step-size η

The keen reader will be wondering, what if we move too far? In our example of Figure 11.4, we could run
into an infinite loop, where

w1 = w3 = w5 = w7 = · · ·
w2 = w4 = w6 = w8 = · · · ,

without ever achieving the minimizer, as depicted below:

How would you fix this problem?

11.4.2 Initialization

The keen reader will also be wondering: what if we start at the wrong place, as depicted below:



Week 11: Neural Networks 11-10

In cases like these we could run into a so-called local minimum, that is, a point that is smaller than all other
points in its vicinity, but not necessarily the minimum over the whole domain of c. In the figure above, w2

is a local minimizer.

How would you fix this problem?

11.5 Backpropagation

Back to neural networks, recall that it all boils down to finding the right parameters {W`,β`}L`=2 such that

f̂ ≈ f?. As discussed above, this can be done by solving (11.4), which we will do using gradient descent,
which in turn requires computing the gradient of each parameter. The key insight is to observe that the
gradient of each weight matrix can be computed backwards in terms of the gradients of the weight matrices
of subsequent layers. To see this, first define z1

i = y1
i = xi, and then for ` = 2, 3, . . . ,L, recursively define

z`i := W`y`−1
i − β`, where y`

i := g`(xi) = σ(z`i ) denotes the output at the `th layer, so that f̂(xi) = yL
i .

Define the cost of the ith sample as ci := yi − f̂(xi), and

δL
i := ci � σ′(zL

i ),

δ`i :=
[
(W`+1)T δ`+1

i

]
� σ′(z`i ), 2 ≤ ` ≤ L− 1,

where � represents the Hadamard product, and σ′ represents the derivative of σ. Then with a simple chain
rule we obtain the following gradients:

∇iW
` :=

∂‖ci‖2

∂W`
= −2 δ`i (y`−1

i )T, ∇iβ
` :=

∂‖ci‖2

∂β`
= −2 δ`i , 2 ≤ ` ≤ L. (11.5)

Training the neural network is equivalent to identifying the parameters {W`,β`}L`=2 such that f̂ ≈ f?. This
can be done using stochastic gradient descent, which iteratively updates the parameters of interest according
to (11.5).

More precisely, at each training time t we select a random subsample Ωt ⊂ {1, 2, . . . ,N} of the training data
(hence the term stochastic), and we update our parameters as follows

W`
t = W`

t−1 − η
∑
i∈Ωt

∇iW
`
t−1,

β`
t = β`

t−1 − η
∑
i∈Ωt

∇iβ
`
t−1,

where η is the gradient step parameter to be tuned. This iteration is repeated until convergence to obtain

the final parameters {Ŵ
`
, β̂

`
}L`=2.



Week 11: Neural Networks 11-11

11.6 Neural Networks Flavors

At some point you may wonder whether the sigmoid function in (11.1) is the only option to use as the
function σ in g`(x) = σ(W`g`−1(x)− β). The answer is: no. For instance, if you use

σ(x) = x,

then you obtain a linear layer/network. If you use

σ(x) = max(0, x),

then you obtain the so-called rectified linear unit (ReLU) layer/network. σ is usually called activation
function. Similarly, if instead of g`(x) = σ(W`g`−1(x)− β) you use

g`(x) = σ(W` ∗ g`−1(x)− β),

where ∗ denotes the convolution operator, then you obtain a convolutional layer/network.

The topology (shape) of the network is defined by the number of layers (L) and the number of neurons in
each layer (n1,n2, . . . ,nL). Networks with large L are often called deep, as opposed to shallow networks that
have small L.

Depending on the problem at hand, one choice of L, n1, . . . ,nL, σ, and g (or combinations) may be better
than another. For example, for image classification, people usually like to mix cascades of one linear layer,
followed by a ReLU layer, followed by a convolutional layer, with large n` in each case, and sometimes with
fixed (predetermined) W’s in the convolutional layers. The possibilities are endless, and deciding on the
best choice of topology remains more of an art than science.

11.7 A Word of Warning

We have mentioned before that using neural networks we can approximate any function f? with arbitrary
accuracy. Put another way, for every f?, and every ε > 0 there exists a function f̂θ with parameters
θ := {W`,β`}L`=2 such that,

‖f?(x)− f̂θ(x)‖2 < ε for every x in the domain of f?. (11.6)

The challenge is to find the parameter θ for which (11.6) is true, which we aim to do using gradient descent
to minimize the following cost function:

c(θ) :=

N∑
i=1

‖f?(xi)− f̂θ(xi)‖2.

The wrinkle is that the cost function that we are trying to minimize may be non-convex, which implies that
we may never find the right parameter θ. In other words, for every f? there will always exist a neural
network (parametrized by θ) that approximates f? arbitrarily well. However, we may be unable to find such
network.

11.8 Neural Nets in Practice

So, in the end neural networks are just a family of functions of the form in (11.3) that receive an input x
(e.g., image), and depending on its parameters {W`,β`}L`=2, will produce an output f̂(x). Using training



Week 11: Neural Networks 11-12

data we can tweak the parameters of the network to make it approximate any desired function f? (e.g., the
function diagnosing whether an MRI corresponds to a healthy or sick person), so that the network learns to
replicate the function f?.

In practice, this can be summarized in several easy steps:

1. Collect training data, i.e., pairs {(xi,yi)}Ni=1 (recall that here xi is your input data, e.g., an image,
and yi is your output, e.g., healthy or sick labels).

2. Choose your network architecture, essentially: number of layers, number of neurons in each layer,
type of layers (e.g., ReLU, convolutional, maxpool, etc.).

3. Choose your cost function, i.e., how you will measure your network’s accuracy. Common examples
include the cost in (11.4), or regularizations such as

N∑
i=1

‖yi − f̂(xi)‖2 +
L∑

`=2

‖W`‖1,

which favors sparse matrices W`, to avoid overfitting as much as possible.

4. Train your network (e.g., using stochastic gradient descent; notice that the gradient will change

depending on the choice of the cost function) to obtain the final parameters {Ŵ
`
, β̂

`
}L`=2.

5. Use your network. Given a new data point x, compute its network output as (11.3).


	Introduction
	Intuition
	Identifying the Right Parameters (aka Training)
	Gradient Descent
	Step-size 
	Initialization

	Backpropagation
	Neural Networks Flavors
	A Word of Warning
	Neural Nets in Practice

