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13.1 Introduction

Support vector machines (SVMs) are considered one of the best“out of the box” classifiers. Similar to
logistic regression and random forests, their main purpose is prediction/classification, and are used for
similar applications (e.g. distinguish between healthy and Alzheimers). However, SVMs are a more geometric
approach. The main idea is to think of each sample as a point in a high-dimensional space, and classify it
according to the region where it is located with respect to a boundary (see Figure 13.1). The challenge is to
find such separating/classifying boundary.

Figure 13.1: An SVM classifies each point according to the region where it is located with respect to a boundary.

13.2 Hyperplanes

Hyperplanes lie at the heart of SVMs. Intuitively, a hyperplane is the generalization of a line and a plane (in
2 and 3 dimensions) to higher dimensions. In words, hyperplanes are subspaces almost as big as the whole
space. More formally, a hyperplane H ⊂ Rd is a linear subspace of dimension d− 1 (see Figure 13.2 to build
some intuition).

Recall from linear algebra that the dimensions of a subspace U ⊂ Rd and its orthogonal complement U⊥ ⊂ Rd

add to the ambient dimension, i.e.,

d = dim(U) + dim(U⊥),

which means that dim(H⊥) = 1, i.e., H⊥ is a line. As such, it is characterized by a single vector. Let β ∈ Rd

be the vector spanning H⊥. Also recall that U is the collection of all points orthogonal to U⊥. Consequently,

13-1



Week 13: Support Vector Machines 13-2

Figure 13.2: Hyperplanes are subspaces of dimension equal to the whole space minus 1. Left: A line in R2 is a hyperplane.
Right: A plane in R3 is a hyperplane. Hyperplanes divide the whole space in two halves, providing a natural classifying
border. Question: Is a line in R3 a hyperplane? Each hyperplane H is characterized by the vector β spanning its orthogonal
complement H⊥.

we can characterize H as the collection of all points in Rd that are orthogonal to β, i.e.,{
x ∈ Rd : 〈x,β〉 = 0

}
,

where 〈x,β〉 = βTx denotes the inner product (see Figure 13.2 to build some intuition). Hyperplanes are
powerful classification tools because they divide the space in two halves: the points x above the hyperplane,
meaning 〈x,β〉 > 0, and the points x below the hyperplane, meaning 〈x,β〉 < 0 (see Figure 13.2).

13.3 Maximal Margin Classifier

SVMs happen to be a generalization of the maximal margin classifier (MMC), which uses a hyperplane as the
separating/classifying border. Notice, however, that given some data, it is possible that there are infinitely
many hyperplanes that could separate it, for example:

As the name suggests, the MMC finds the hyperplane that separates data with the highest possible margin
M . More precisely, given data points x1, . . . ,xn ∈ Rd, with labels/classes y1, . . . , yn ∈ {−1, 1}, the MMC
aims to find:

β? := arg max
β∈Rd:
‖β‖=1

M subject to yi〈xi,β〉 ≥M ∀ i = 1, . . . ,n. (13.1)

The intuition behind (13.1) is quite simple. First, M denotes the margin that we want to maximize. The first
constraint ‖β‖ = 1 simply guarantees that we do not cheat by making β too large. The second constraint
yi〈xi,β〉 ≥M ensures that each training point is on the right side of the hyperplane (because it requires that
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the sign of the true label yi and the classification 〈xi,β〉 are equal) and also ensures that the perpendicular
distance between xi and the hyperplane (given by yi〈xi,β〉) is larger than the margin M .

All vectors that are exactly within M distance of the hyperplane are called support vectors:

13.4 Support Vector Classifier

It is pretty clear that a hyperplane may not classify two classes perfectly:

The support vector classifier (SVC), also known as the soft margin classifier, arises as an idea to address
this problem. They key idea is to allow some wiggle room by letting some points to be misclassified, using
the following optimization instead of (13.1)

β? := arg max
β∈Rd, ε∈Rd:
‖β‖=1, ‖ε‖≤E

M subject to

{
yi〈xi,β〉 ≥M(1− εi)
εi ≥ 0

∀ i = 1, . . . ,n. (13.2)

There are a few differences between (13.1) and (13.2). First, we are now also maximizing over ε, which
models the wiggle room that will be allowed in our sample. The constraint ‖ε‖ ≤ E guarantees that the
overall wiggle room does not exceed the overall allowed error E, which is a tuning parameter. The constraint
yi〈xi,β〉 ≥M(1− εi) ensures that the orthogonal distance from xi and the hyperplane is larger than M , or
only a little smaller; how little is determined by εi, which should be greater than zero (do you understand
why?).

This type of approach is often called a relaxation, and will allow some points to be inside the margin, and
even on the wrong side of the hyperplane, as in the following figure:
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’

13.5 Nonlinear Boundaries

It is pretty clear that not all datasets can be divided by a linear boundary:

Hence, instead of classifying each point using the linear function 〈x,β〉 = β1x1 + β2x2 + · · ·+ βdxd, we can
use other non-linear functions, for example quadric (degree-2) polynomials:

f2(x) : = β11x2
1 + β12x1x2 + β13x1x3 + · · ·+ β1dx1xd (13.3)

+ β22x2
2 + β23x2x3 + · · ·+ β2dx2xd (13.4)

+
... (13.5)

+ βddx2
d. (13.6)

This suggests extending the SVC formulation in (13.2) to:

β? := arg max
β∈Rd, ε∈Rd:
‖β‖=1, ‖ε‖≤E

M subject to

{
yif2(xi) ≥M(1− εi)
εi ≥ 0

∀ i = 1, . . . ,n. (13.7)

The only difference with (13.2) is that now we use f2(xi) instead of 〈xi,β〉. Intuitively, this is guaranteeing
that the true label yi and the prediction f2(xi) agree by more than (1 − εi) of the margin M . This will
produce a non-linear boundary:
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Letting

β ⊗ β :=


β1β
β2β

...
βdβ

 =



β1β1
β1β2

...
β1βd
β2β1
β2β2
β2β3

...
β2βd

...
βdβ1

βdβ2
...

βdβd



,

and similarly for x⊗ x, we can rewrite (13.7) as

β? := arg max
β∈Rd, ε∈Rd:
‖β‖=1, ‖ε‖≤E

M subject to

{
yi〈xi ⊗ xi,β ⊗ β〉 ≥M(1− εi)
εi ≥ 0

∀ i = 1, . . . ,n, (13.8)

which is linear in the lifted vectors x⊗x and β⊗β. Consequently, by simply multiplying our data by itself,
we can construct non-linear boundaries with the same linear techniques as before. The downside is that the
number of parameters increases polynomially. For instance, instead of the d parameters (corresponding to
the entries in β) we now have

(
d
2

)
= d(d− 1)/2 parameters, corresponding to the entries β⊗β (Notice that

β ⊗ β ∈ Rd2

, but some entries are duplicated; in total there are
(
d
2

)
distinct entries).

13.6 Kernels and Support Vector Machines

Kernels are functions that quantify the similarity between two vectors. For example, if you remember from
your linear algebra 101 class, the inner product is a kernel that measures angle as follows:

∠(x,β) =
〈x,β〉
‖x‖‖β‖

There are many other kernels (functions that measure similarity between vectors), for example:

K(x,β) = 〈x⊗ x,β ⊗ β〉,

which is precisely the function that we used in (13.8), corresponding to the quadric polynomial in (13.3).
The more similar x and β are, the larger K(x,β) will be. We can extend this idea to obtain a polynomial
kernel of degree r:

K(x,β) = (1 + 〈x,β〉)r =

(
1 +

d∑
i=1

xiβi

)r

.
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Kernels are not necessarily only polynomial functions. For example, another popular choice is the radial
kernel:

K(x,β) = e−γ‖x−β‖
2

= exp

(
−γ

d∑
i=1

(xi − βi)2
)
,

which will produce a boundary like the following:

Depending on the dataset at hand, one kernel may be better than another. The support vector machine
(SVM) is simply a generalization of the SVC that uses a kernel function:

β? := arg max
β∈Rd, ε∈Rd:
‖β‖=1, ‖ε‖≤E

M subject to

{
yiK(xi,β) ≥M(1− εi)
εi ≥ 0

∀ i = 1, . . . ,n. (13.9)
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