CS 4780/6780: Fundamentals of Data Science

Spring 2019

Topic 7: Nearest Neighbors

INSTRUCTOR: DANIEL L. PIMENTEL-ALARCÓN

© Copyright 2019

GO GREEN. AVOID PRINTING, OR PRINT DOUBLE-SIDED.

7.1 Introduction

One of the most fundamental problems in data science is classification, which can be summarized as assigning a label (class) $y \in \{1, 2, ..., C\} =: [C]$ to a data point $\mathbf{x} \in \mathbb{R}^{D}$. For example:

- Given a data vector \mathbf{x} containing an individual's information (e.g., genome or demographics), determine whether such individual has Alzheimer's (y = 1) or not (y = 0).
- Given a vectorized image \mathbf{x} of a human face, determine which person (y) amongst a database of C individuals is depicted in \mathbf{x} .
- Given a vectorized image \mathbf{x} of a character, determine which symbol (y) amongst an alphabet of C corresponds to \mathbf{x} .

Nearest neighbors is arguably the simplest classification method. The main idea is to assign each data point to the class of its most *similar* pre-classified points. Since there are several ways to measure similarity, there are also several flavors of nearest neighbors. In all of them, we assume we already have a collection of training data points $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N \in \mathbb{R}^D$ whose corresponding classes $y_1, y_2, \ldots, y_N \in [C]$ are already known. Given a new data point $\mathbf{x} \in \mathbb{R}^D$ whose class is unknown, the goal is to determine its corresponding class $y \in [C]$.

7.2 Nearest Neighbor

The simplest form of nearest neighbors simply assigns the new point to the class of its *closest* point in our data, that is, $y = y_{\hat{i}}$, where

$$\hat{\mathbf{i}} = \underset{i \in [N]}{\operatorname{arg\,min}} \|\mathbf{x} - \mathbf{x}_i\|.$$
(7.1)

Notice that there are several ways to measure distance, so the norm in (7.1) could be chosen according to the notion of similarity that best suits the application; the most widely used is the euclidean distance, $\|\cdot\|_2$.

Example 7.1. Consider the following training data:

$$\mathbf{x}_1 = \begin{bmatrix} 3\\2 \end{bmatrix} \quad \mathbf{x}_2 = \begin{bmatrix} 4\\1 \end{bmatrix} \quad \mathbf{x}_3 = \begin{bmatrix} -5\\4 \end{bmatrix} \quad \mathbf{x}_4 = \begin{bmatrix} -6\\5 \end{bmatrix} \quad \mathbf{x}_5 = \begin{bmatrix} -1\\-4 \end{bmatrix} \quad \mathbf{x}_6 = \begin{bmatrix} 0\\-5 \end{bmatrix},$$

with classes $y_1 = 1$, $y_2 = 1$, $y_3 = 2$, $y_4 = 2$, $y_5 = 3$, $y_6 = 3$ and suppose you observe an additional sample $\mathbf{x} = \begin{bmatrix} 3.25 & -3 \end{bmatrix}^{\mathsf{T}}$:

7.3 K-Nearest Neighbors

Using a single neighbor as reference can be quite sensitive to noise. Hence, to make our nearest neighbor algorithm more robust, we can simply use a *consensus* approach: rather than using a single neighbor, we an use K, and assign \mathbf{x} to the class with the most votes. In this case, the K-nearest neighbors algorithm can be summarized as follows:

Algorithm 1: K-Nearest Neighbors

Input: Training pairs $\{\mathbf{x}_i, y_i\}_{i=1}^N$

Compute distances: For each i, $\delta_i = \|\mathbf{x} - \mathbf{x}_i\|$.

Find K nearest neighbors: $\hat{i}_1, \ldots, \hat{i}_K$ = indices of data points that produce K smallest distances δ_i . Output: Class of new point y = class of the majority amongst $y_{\hat{i}_1}, y_{\hat{i}_2}, \ldots, y_{\hat{i}_K}$.

Example 7.2. In addition to the data in , suppose we also have:

$$\mathbf{x}_7 = \begin{bmatrix} 3\\ 3 \end{bmatrix} \quad \mathbf{x}_8 = \begin{bmatrix} 4\\ 2 \end{bmatrix} \quad \mathbf{x}_9 = \begin{bmatrix} -5\\ 5 \end{bmatrix} \quad \mathbf{x}_{10} = \begin{bmatrix} -6\\ 4 \end{bmatrix} \quad \mathbf{x}_{11} = \begin{bmatrix} 0\\ -4 \end{bmatrix} \quad \mathbf{x}_{12} = \begin{bmatrix} -1\\ -5 \end{bmatrix},$$

with classes $\{1, 1, 2, 2, 3, 3\}$:

The distances to \mathbf{x} are:

 $\begin{aligned} \|\mathbf{x} - \mathbf{x}_7\| &= 6.01, & \|\mathbf{x} - \mathbf{x}_8\| &= 5.06, & \|\mathbf{x} - \mathbf{x}_9\| &= 11.49, \\ \|\mathbf{x} - \mathbf{x}_{10}\| &= 11.60, & \|\mathbf{x} - \mathbf{x}_{11}\| &= 3.40, & \|\mathbf{x} - \mathbf{x}_{12}\| &= 4.6971. \end{aligned}$

We thus conclude that the closest K = 5 points (with respect to the ℓ_2 -norm) are $\{11, 6, 2, 5, 12\}$, which belong to classes $\{3, 3, 1, 3, 3\}$. By consensus, we conclude that **x** belongs to class 3. You can verify that if we use the ℓ_1 norm, the closest K = 5 points are $\{11, 2, 1, 5, 6\}$, which belong to classes $\{3, 1, 1, 3, 3\}$, and hence this time we also conclude by consensus that **x** belongs to class 3:

Notice that the shape of the ℓ_2 -ball (boundary with all equidistant points) is a circle, while the shape of the ℓ_1 -ball is a diamond!

Also notice that I chose to use K = 5 neighbors. Why 5? Why not 3, or 6, or any other number?