
CS 4780/6780: Fundamentals of Data Science Spring 2019

Topic 9: Logistic Regression

Instructor: Daniel L. Pimentel-Alarcón c© Copyright 2019

GO GREEN. AVOID PRINTING, OR PRINT DOUBLE-SIDED.

9.1 Introduction

Arguably the simplest task that we can teach a computer is to distinguish between two classes. For example:

1. Does this image contain a dog or a cat?

2. Is this person healthy or diabetic?

3. Would this individual survive a disaster?

Logistic regression is one of the most elemental yet powerful techniques for this purpose. The main idea is
to compute the likelihood that a sample (e.g., a person) belongs to each class, based on its information and
the information of previous (training) samples, and then choose the most likely class.

9.2 Setup

Suppose you want to determine whether your girlfriend/boyfriend is cheating on you, based on certain
information (features) about her/him, like age, gender, height, weight, etc. Let x ∈ Rd denote the vector
containing this information, which looks like this:

x =

age

gender
height
weight

...

 .

Here d denotes the number of features. Similarly, let y be the random variable indicating whether s/he is
not cheating on you: y = 1 means s/he is, y = 0 means s/he isn’t. Hence we can rephrase our goal as
determining whether y = 0 or y = 1 based on x. Mathematically, we want to find a function f such that

y = f(x).

Perhaps the most natural way to achieve this is to let f be of the form:

f(x) =

{
0 if P(y = 0|x) > P(y = 1|x)
1 otherwise.

(9.1)

9-1

Topic 9: Logistic Regression 9-2

In words, (9.1) is simply saying: decide y = 0 if the probability of y being 0 (based on x) is larger than the
probability of y being 1, and decide y = 1 otherwise. We can rewrite this as follows:

P(y = 1|x)
f(x) = 1

≷
f(x) = 0

P(y = 0|x),

or equivalently, as:

P(y = 1|x)

P(y = 0|x)

f(x) = 1

≷
f(x) = 0

1.

The term on the left is often known as the odds. If we know the odds, we know whether P(y = 1|x) or
P(y = 0|x) is more likely, and we can decide accordingly. Hence, our goal is to determine what are the odds
based on x. Arguably, the simplest, most natural approach is to model the odds as a linear combination of
the entries in x, i.e.,

P(y = 1|x)

P(y = 0|x)
= βTx, (9.2)

where β ∈ Rd contains the coefficients of the linear combination of x. Notice that βT is just the compact

(grown up) way to write β1x1+β2x2+ · · ·+βdxd. The problem with (9.2) is that P(y=1|x)
P(y=0|x) ≥ 0, while βTx ∈ R

(i.e., βTx could be negative). To avoid this discrepancy, rather than (9.2), logistic regression simply applies
a log function on the odds, to obtain:

log

(
P(y = 1|x)

P(y = 0|x)

)
= βTx. (9.3)

The term on the left is often known as log-odds. It is from this idea that logistic regression obtains its name.
Notice that in (9.3), both the log-odds and βTx are real numbers, so there is no longer any discrepancy.
Letting p := P(y = 1|x) we can rewrite (9.3) as

p

1− p
= eβ

Tx,

and solving for p we have:

p = (1− p)eβ
Tx

p = eβ
Tx − p(eβ

Tx)

p(1 + eβ
Tx) = eβ

Tx

p =
eβ

Tx

1 + eβ
Tx
,

which we can further simplify to:

p =

eβ
Tx

eβTx

1+eβTx

eβTx

=
1

1

eβTx
+ eβTx

eβTx

=
1

1

eβTx
+ 1

=
1

1 + e−β
Tx
.

To summarize, logistic regression is modeling P(y = 1|x) as 1

1+e−βTx
. Hence, we can rewrite our decision

function as:

Topic 9: Logistic Regression 9-3

1

1 + e−β
Tx

f(x) = 1

≷
f(x) = 0

1− 1

1 + e−β
Tx
, (9.4)

which intuitively says: if P(y = 1|x) is larger than P(y = 0|x) (or equivalently, larger than 1/2), then we
conclude that y = 1, and otherwise we conclude that y = 0.

This means that if you want to know whether your girlfriend/boyfriend is cheating on you, all you have to
do is plug her/his feature vector x in (9.4), and decide accordingly. The catch here is that (9.4) depends on
β, which you do not know a priori. So, which β should you use? The answer is: you have to infer/learn it.

9.3 Inferring/Learning β

Logistic regression uses (9.4) to decide whether y = 0 or y = 1. However, our function f in (9.4) depends
on β, which is unknown a priori. To estimate/learn β we use training data, meaning a collection of pairs
(x1, y1), (x2, y2), . . . , (xn, yn) containing features x1,x2, . . . ,xn and their corresponding variables of interest
y1, y2, . . . , yn. In our example, this would mean features about n people and their information about whether
they are cheating or not.

In words, our goal is to find the parameter β that best explains our training samples. More precisely, we
want to find the parameter β that maximizes the likelihood of our sample. Intuitively, this likelihood is the
chance that our observed samples are correctly predicted by f (which depends on β), i.e., the probability
that yi = f(xi), for every i = 1, . . . ,n.

9.4 Likelihood

Recall that a probability distribution P(x = x|θ) determines the probability that a random variable x takes
a certain value x, given some parameter θ. For example, if x ∼ Bernoulli(p), then the probability that x
takes the value 1 is p. In this case p is the parameter θ.

Conversely, the likelihood L(θ|x = x) determines the probability that a parameter θ was the one that
generated a sample x.

Example 9.1. Suppose we know x is distributed i.i.d. Bernoulli(p), and we observe x = 1. Then the
likelihood of parameter p given sample x = 1 is:

L(p|x = 1) = P(x|p)
∣∣∣
x=1

= p.

P(x|θ) and L(θ|x) may look the same. The difference is that P(x|θ) is a function where x is the variable, and
θ is fixed. In contrast, L(θ|x) is a function where θ is the variable, and x is fixed. In other words, we use
P(x|θ) when we have not observed x, but we know θ; we use L(θ|x) when we have already observed x, and
we want to know the likelihood that a certain parameter θ that generated it. This is why we use of x (as
opposed to x), to denote that data is already observed.

Topic 9: Logistic Regression 9-4

Example 9.2. Suppose x ∼ N (µ, 1). Then

P(x|µ) =
1√
2π
e−

1
2 (x−µ)

2

.

Notice that with probability, µ is known, and x is the variable. In contrast, with the likelihood, x is
known, and µ is the variable:

L(µ|x) = P(x|µ)
∣∣∣
x=x

=
1√
2π
e−

1
2 (x−µ)

2

Example 9.3. Suppose x1, . . . , x6 are distributed i.i.d. Bernoulli(1/4). Then the probability that
x1 = x2 = x3 = 1, and x4 = x5 = x6 = 0 is:

P(x1 = x2 = x3 = 1, x4 = x5 = x6 = 0|p) =
3∏

i=1

P(xi = 1|p) ·
6∏

i=4

P(xi = 0|p)

= p3(1− p)3 = (1/4)3 (3/4)3.

Instead, suppose that we observe x1 = x2 = x3 = 1, and x4 = x5 = x6 = 0. Then the likelihood of p
under this sample is:

L(p|x1, . . . , x6) =

6∏
i=1

P(xi|p)
∣∣∣
xi=xi

=

3∏
i=1

P(xi|p)
∣∣∣
xi=1
·

6∏
i=4

P(xi|p)
∣∣∣
xi=0

= p3(1− p)3.

Based on this sample, which would be your best guess at the value of p? Is this the same value that
maximizes L(p|x1, . . . , x6)?

9.5 Maximum Likelihood

Back to logistic regression, we can model our training data y1, . . . , yn as i.i.d. realizations of a Bernoulli(p)
random variable, where p = 1

1+e−βTxi
. A little thought shows that the likelihood of a Bernoulli(p) random

variable can be written as:

L(p|y) = py(1− p)1−y.

Make sure you understand why this is true. By independence, the likelihood of our training sample is:

L(p|y1, . . . , yn) =

n∏
i=1

L(p|yi) =

n∏
i=1

pyi(1− p)1−yi .

Since p is in turn a function of the unknown parameter β and the known data x1, . . . ,xn, we can rewrite
this as

L(β|y1, . . . , yn,x1, . . . ,xn) =

n∏
i=1

(
1

1 + e−β
Txi

)yi
(

1− 1

1 + e−β
Txi

)1−yi

. (9.5)

To ease our notation we will use L(β|Y,X) as shorthand for L(β|y1, . . . , yn,x1, . . . ,xn). Our goal is to find
the β that maximizes this likelihood. Maximizing products as in (9.5) can be difficult (as you know from
the chain rule of derivatives), so to simplify this maximization, we will use a common trick: apply log, so

Topic 9: Logistic Regression 9-5

that products transform into sums, which are easily maximized (because of the linearity of derivatives: the
derivative of a sum is the sum of derivatives). We know we can do this because L is positive (so we can
apply log), and log is monotonically increasing, implying that

arg min
β∈Rd

L(β|Y,X) = arg min
β∈Rd

log
[
L(β|Y,X)

]
.

So instead of maximizing the likelihood directly, we can equivalently maximize the so-called log-likelihood:

`(β|Y,X) : = log
[
L(β|Y,X)

]
(9.6)

= log

[
n∏

i=1

(
1

1 + e−β
Txi

)yi
(

1− 1

1 + e−β
Txi

)1−yi
]

(9.7)

=

n∑
i=1

log

[(
1

1 + e−β
Txi

)yi
(

1− 1

1 + e−β
Txi

)1−yi
]

(9.8)

=

n∑
i=1

yi log

(
1

1 + e−β
Txi

)
+ (1− yi) log

(
1− 1

1 + e−β
Txi

)
, (9.9)

which is easier to maximize than (9.5) because it contains a sum, rather than a product. Sadly, (9.6) is still
complex enough that it cannot be maximized with our calculus 101 recipe (take derivative, set to zero, and
solve for the optimizer), so instead we will use gradient ascent.

9.6 Gradient Ascent

One often wants to find the maximizer of a function g(β), that is, the value β? such that g(β?) ≥ g(β) for
every β in the domain of g. If g is concave and simple enough, β? can be determined using our elemental
calculus recipe:

1. Take derivative of g(β)

2. Set derivative to zero, and solve for the maximizer.

Example 9.4. Consider g(β) = 3− (β + 5)2. We can follow our recipe to find its maximizer:

1. The derivative of g is given by ∇g(β) = −2(β + 5).

2. Setting the derivative to zero and solving for β we obtain:

−2(β + 5) = 0

β = −5.

Since g is concave (can you show this?), we conclude that its maximizer is β? = −5, as depicted below:

Topic 9: Logistic Regression 9-6

Some functions, however, are either not concave, or too complex that we cannot solve for β in step 2. For
example, the gradient of (9.6) is:

∇`(β|Y,X) =

N∑
i=1

(
yi −

1

1 + e−β
Txi

)
xi. (9.10)

If we set this to zero, can you solve for β?

For cases where our calculus 101 recipe does not work, we use optimization, which is the field of mathematics
that deals with finding maximums (and minimums). In particular, we will use one of the most elemental
tools of optimization: gradient ascent.

The setting is is this: you have a function g(β). You want to find its maximum. You cannot solve for it
directly using the derivative trick, so what can you do? You can test the value of g for different values of β.
For example, you can test g(0), then maybe g(1), then maybe g(−1), then maybe g(1.5), and so on, until
you find the maximizer. Of course, depending on the domain of g, there could be infinitely many options,
so testing them all would be infeasible.

As the name suggests, the main idea of gradient ascent is to test some initial value β0 (for example 0), and
iteratively use the gradient (another name for derivative) to determine which value of β to test next, such
that the each new value βt+1 produces a higher value for g, until we find the maximum. The main intuition
is that the gradient ∇g(β) tells us the slope of g at β. If this slope is positive, then we know that g is
increasing, and we should try a larger value of β, say βt+1 = βt + η, where η is often referred to as step-size.
If the slope is negative, then we know that g is decreasing, and we should try a smaller value of β, say
βt+1 = βt − η (see Figure 9.1 to build some intuition).

Figure 9.1: Start at some point β0. If the gradient is positive (left figure), try a larger value of β, say β1 = β0 + η. If the
gradient is negative (right figure), try a smaller value of β, say β1 = β0 + η. Repeat this until convergence.

The same insight extends to multivariable functions. If g is a function of a vector β ∈ Rd, then ∇g(β) ∈ Rd

Topic 9: Logistic Regression 9-7

gives the slope of g in each of the d coordinates of β. Based on this insight, gradient ascent can be summarized
as follows:

Algorithm 1: Gradient Ascent

Input: Function g, step-size parameter η > 0.
Initialize β0. For example, β0 = 0.
Repeat until convergence: βt+1 = βt + η∇g(βt).
Output: β? = βt.

9.6.1 Step-size η

The keen reader will be wondering, what if we move too far? In our example of Figure 9.1, we could run
into an infinite loop, where

β1 = β3 = β5 = β7 = · · ·
β2 = β4 = β6 = β8 = · · · ,

without ever achieving β?, as depicted below:

How would you solve this?

9.6.2 Initialization

The keen reader will also be wondering: what if we start at the wrong place, as depicted below:

Topic 9: Logistic Regression 9-8

In cases like these we could run into a so-called local maximum, that is, a point that is larger than all other
points in its vicinity, but not necessarily the maximum over the whole domain of g. In the figure above, β2
is a local maximizer.

How would you solve this?

9.7 Maximizing Likelihood for Logistic Regression

Equipped with gradient ascent, we can go back to logistic regression to find the parameter β that maximizes
the likelihood. All we need to do is use gradient ascent to find:

β? = arg max
β∈Rd

L(β|Y,X).

Once we have found β?, we can determine whether y = 0 or y = 1 for a new sample with features x, by
simply using (9.4), with β? instead of β.

	Introduction
	Setup
	Inferring/Learning
	Likelihood
	Maximum Likelihood
	Gradient Ascent
	Step-size
	Initialization

	Maximizing Likelihood for Logistic Regression

