## Mini-Project 3: K-means Clustering & Breast Cancer

Instructor: Daniel L. Pimentel-Alarcón

DUE 02/26/2018

In this mini-project you will use K-means clustering to try to diagnose breast cancer based solely on a Fine Needle Aspiration (FNA), which as the name suggests, takes a very small tissue sample using a syringe (Figure 3.1).

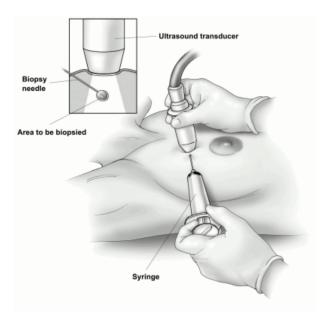



Figure 3.1: Fine Needle Aspiration using ultrasound. © Sam and Amy Collins.

To this end we will use the Wisconsin Diagnostic Breast Cancer dataset, containing information about 569 FNA breast samples [1]. Each FNA produces an image as in Figure 3.2. Then a clinician isolates individual cells in each image, to obtain 30 characteristics (features), like size, shape, and texture. You will use these 30 features to cluster *benign* from *malign* FNA samples.

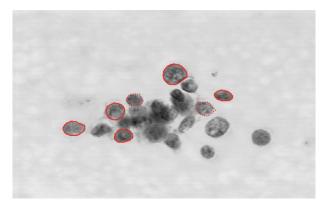



Figure 3.2: Breast sample obtained by FNA.

(a) Implement a function that performs K-means clustering. You can get started with the following code:

```
function C = kmeansclustering(X,K,mu,tol,maxIter)
   % X = (D x N) data matrix; D = ambient dimension (features)
                               N = number of samples
  % K = number of clusters
   % mu = (D x K) matrix containing initial centers
   % tol = Tolerance parameter for convergence
   % maxIter = Maximum number of iterations before giving up
   % C = (1 \times N) matrix indicating the clustering.
   C = zeros(1,N);
10
   change = tol + 1;
11
12 it = 0;
  while change>tol && it<maxIter,
14
       % ===== Assign points to current centers =====
15
16
       % ===== Recalculate centers =====
17
19
  end
```

- (b) Load the Wisconsin Diagnostic Breast Cancer dataset (breast\_data.csv). You should obtain a data matrix with D = 30 features and N = 569 samples. Run K-means clustering on this data.
- (c) The file breast\_truth.csv contains a vector in  $\{0,1\}^{569}$  indicating the *true* clustering of the dataset (0 = benign, 1 = malign). What is the accuracy of your algorithm?
- (d) Run your algorithm several times, starting with different centers. Do your results change depending on this? Explain.
- (e) Run your algorithm, initialized with the centers in the file mu\_init.mat, containing a (D × K) matrix mu\_init, where each column represents one of the initial centers. What accuracy do you obtain?
- (f) What if you initialize with the true centers, obtained using the true clustering?
- (g) **For extra credit.** Can you could obtain better results using an other *unsupervised* learning method? What about a *supervised* one?

## References

[1] O. Mangasarian, W. Street and W. Wolberg, Breast cancer diagnosis and prognosis via linear programming, Operations Research, 1995. Dataset available at http://pages.cs.wisc.edu/~olvi/uwmp/cancer.html#diag