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10.1 Review of Bayes Rule

Definition 10.1 (Conditional probability). Let A,B be two events. The conditional probability that A
occurs given B occurred is

P(A|B) :=
P(A ∩B)

P(B)

Example 10.1. Consider a 6-faced fair die. Let A = {1, 2} be the event that the die rolls either 1 or
2, and similarly for B = {2, 3}. The probability that A occurs is P(A) = 1/3. However, if you already
know that B occurred, then the conditional probability that A also ocurred increases to

P(A|B) =
1/6
1/3

=
1

2
.

Given the conditional probability P(A|B), Bayes rule gives us a formula for the posterior probability, P(B|A).

Lemma 10.1 (Bayes rule). Let A,B be two events. Then

P(B|A) =
P(A|B)P(B)

P(A)
(10.1)

Bayes rule plays a crucial role in modern applications, as it establishes a clear relationship between conditional
and posterior probabilities.

Example 10.2. Geneticists have determined that 90% of the people with disease B have gene A active,
i.e., P(A|B) = 0.9. If you sequence your genome and find out that your gene A is active, what is the
probability that you develop disease B? In other words, what is P(B|A)? At first glance you might
think it is very likely that you will develop disease B. However, to determine this you need to know
P(A) and P(B). Of the whole population, if only 5% have disease B, while 45% have gene A active,
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what is P(B|A)? This is a simple application of Bayes rule:

P(B|A) =
P(A|B)P(B)

P(A)
=

(0.9)(0.05)

0.45
= 0.1

Definition 10.2 (Independent events). Let A,B be two events. We say A and B are independent if

P(A|B) = P(A).

Example 10.3. Consider two fair dice. Let A be the event that the first die is 1; let B be the event
that the second die is 1. Then

P(A|B) =
P(A = 1 ∩B = 1)

P(B = 1)
=

1/36
1/6

=
1

6
= P(A).

Hence the events A and B are independent. This matches our intuition that one die has no influence
on the outcome of the other.

10.2 Naive Bayes

Naive Bayes is one of the simplest supervised classification methods: one has a collection of N training pairs
{(xi, yi)}Ni=1, where xi ∈ RD contains the D features of the ith sample (e.g., glucose level, height, sex, etc.),
and yi ∈ {1, . . . ,C} =: [C] denotes the class to which sample i belongs (e.g., healthy or diabetic). Given a
new sample x, the goal is to determine its class y. The main idea behind Naive Bayes is to choose the class
with the highest posterior probability under the naive assumption that features are independent. That is,

ŷ : = argmax
y∈[C]

P(y|x) (10.2)

= argmax
y∈[C]

P(x|y)P(y)
P(x)

(10.3)

= argmax
y∈[C]

P(x|y)P(y) (10.4)

= argmax
y∈[C]

P(y)
D∏
j=1

P(xj|y). (10.5)

Here P(y|x) in (10.2) is the posterior probability that we aim to maximize. (10.3) decomposes the posterior
into the prior probability of a class P(y), and the conditional probability P(x|y) of the sample given each
class (a.k.a. likelihood), using Bayes rule. (10.4) follows because P(x) does not depend on y, and (10.5) by
the independence assumption of the features of x, denoted by xj. With (10.5) it all boils down to estimating
P(y) and P(xj|y) for each class y, which can be done by maximum likelihood using the given training data.

Example 10.4 (Bernoulli). Congratulations. You have just been hired by Google to develop a new
email spam filter using Naive Bayes. To this end you can use the following dataset, indicating the words
included in a list of emails:
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Samples (Emails)
1 2 3 4 5 6 7 8 9 10

F
ea
tu
re
s

1 congratulations 1 1 1 1 1 0 0 0 0 1
2 you 1 1 1 0 0 0 1 1 0 0
3 won 0 1 1 1 1 1 0 0 0 1
4 free 1 1 1 1 1 1 1 0 0 0
5 gift 0 0 1 1 1 1 0 1 0 0
6 attached 0 0 1 0 0 0 1 1 1 0
7 sincerely 1 0 1 0 0 1 0 0 1 1
8 thanks 0 1 0 1 1 0 1 1 0 0

y Class Spam Not Spam

Given a new email saying “congratulations, you won free gift”, the goal is to determine whether it is
spam or not. To this end, Naive Bayes first estimates P(y) using maximum likelihood. Recall that the
likelihood of i.i.d. Bernoulli(p) samples y1, y2, . . . , yN is

P(y1, y2, . . . , yN|p) = p
∑N

i=1 yi(1− p)N−
∑N

i=1 yi ,

so the maximum likelihood estimate (MLE) is

p̂ := argmax
p

p
∑N

i=1 yi(1− p)N−
∑N

i=1 yi =
1

N

N∑
i=1

yi,

where the last step can be derived using our Optimization 101 recipe (take log, take derivative, set to
zero, and solve). We thus conclude that the MLE of P(y) is given by the fraction of samples that fall
under each class:

P̂(y = spam) =
6

10
=

3

5
,

P̂(y = not spam) =
4

10
=

2

5
.

Similarly, for each feature xj we can obtain the MLE of its probability P(xj = 1|y) as the fraction of 1’s
in each class,

P̂(xj = 1|y = y) =

∑N
i=1 1{xij=1,yi=y}∑N

i=1 1{yi=y}
, (10.6)

to obtain the following conditional probability matrix estimate:

P̂(xj = 1|y)
Spam Not Spam

F
ea
tu
re
s

1 congratulations 5/6 1/4
2 you 1/2 1/2
3 won 5/6 1/4
4 free 1 1/4
5 gift 2/3 1/4
6 attached 1/6 3/4
7 sincerely 1/2 1/2
8 thanks 1/2 1/2
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Given our new sample with feature vector x = [ 1 1 1 1 1 0 0 0 ]T, all we have to do is estimate
the posterior probability of each class under the naive assumption:

P̂(y = spam|x) ∝ P̂(y = spam) ·
D∏
j=1

P̂(xj|y = spam)

=
3

5
· P̂(x1 = 1|y = spam) · P̂(x2 = 1|y = spam) · P̂(x3 = 1|y = spam)

P̂(x4 = 1|y = spam) · P̂(x5 = 1|y = spam) · P̂(x6 = 0|y = spam)

P̂(x7 = 0|y = spam) · P̂(x8 = 0|y = spam)

=
3

5
· 5
6
· 1
2
· 5
6
· 1 · 2

3
· 5
6
· 1
2
· 1
2

= 0.0289.

Similarly, we can estimate P̂(y = not spam|x), and choose the class with the largest posterior probability.
In this case, how would you classify the new sample x? Notice that if a feature xj never takes a given
value x in class y, then P(xj = x|y = y) will be equal to zero, which in turn would also zero out the
posterior P(y = y|x), neglecting the information in all other probabilities involved. To avoid this issue,
the estimation of P(xj = x|y = y) is often smoothed by adding a regularization term (representing a
virtual sample with feature xj = x in class y), so that no probability is ever estimated to be exactly
zero. For example, instead of (10.6) we could use:

P̂(xj = 1|y = y) =

∑N
i=1 1{xij=1,yi=y} + 1∑N

i=1 1{yi=y} + Kj

,

where Kj is the number of possible values that the feature xj may take. The case when we add 1 sample
per feature value per class is called Laplace smoothing, and the general case is called Lidstone smoothing.

Example 10.5 (Gaussian). Suppose you are the detective in charge of a murder, and have been able
to gather the following evidence about the killer: shoe size = 42cm, height = 180cm, and maximum
running speed = 5.5 minutes/mile. To narrow down your list of suspects you first want to determine
whether the killer is male or female, using a Naive Bayes approach. To this end you may use the
following information:

Samples (People)
1 2 3 4 5 6

F
ea
tu
re
s 1 Shoe size (cm) 41 43 44 45 37 39

2 Height (cm) 170 175 185 180 160 170
3 Max Speed (min/mile) 6 7 6.5 7.5 6.5 7

y Sex Male Female

First we obtain the MLE of the priors as the fraction of samples in each class. In this case:

P̂(y = male) =
4

6
=

2

3
,

P̂(y = female) =
2

6
=

1

3
.

Next notice that features like these can be modeled as Normal random variables with the following
MLE’s of the means and variances:
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Male Female
Mean Variance Mean Variance

Shoe size 43.25 2.9 38 2
Height 177.5 41.7 165 50

Max Speed 6.75 0.42 6.75 0.125

Then we can estimate the marginal conditionals of our new datum x = [42 180 5.5]T according to the
Normal distribution to obtain:

P̂(x1|y = male) =
1√

2π(2.9)
e−

(42−43.25)2

2(2.9) = 0.1787

P̂(x2|y = male) =
1√

2π(41.7)
e−

(180−177.5)2

2(41.7) = 0.0573

P̂(x3|y = male) =
1√

2π(0.42)
e−

(5.5−6.75)2

2(0.42) = 0.0948.

With this, we can compute the naive posterior:

P̂(y = male|x) = P(y = male)

D∏
j=1

P̂(xi|y = male) =
2

3
(0.1787)(0.0573)(0.0948) = 6.4745× 10−4.

Similarly, one can estimate P̂(x|y = female), and choose the class with the highest posterior. What
would be your conclusion, is the killer male or female?

10.3 Bayesian Networks

A less naive strategy drops the independence assumption, and considers limited dependencies between a
query variable y, evidence variables xj whose values are given, and hidden variables xj whose values are
unknown. The dependencies are determined by a directed acyclic graph G, and a set of conditional probability
distributions, where each node of the graph represents a variable that is conditionally independent on its non-
descendants given its parents, which are indicated by the edges of the graph. This way, the joint probability
simplifies as:

P(y, x1, x2, . . . , xD) = P(y)
D∏
j=1

P(xj|y, x1, x2, . . . , xj−1)

= P(y)
D∏
j=1

P(xj|PG(xj)),

where the first equality is the Law of Total Probability, and PG(xj) are the parents of node xj according to
the graph G. Bayesian Networks can be used to answer questions like: what is the probability that y = y
given that xj = xj for every j in a subset of {1, . . . ,D}. For example, consider the following related binary
random variables:

(B) Burglary occurs at your home,

(E) Earthquake occurs at your home,

(A) Alarm goes off,
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(J) John calls to report the alarm,

(M) Mary calls to report the alarm,

and suppose a Burglary or Earthquake can trigger an alarm, which may make John or Mary call to report
the alarm, according to the following graph and conditional probabilities:

Burglary Earthquake

Alarm

John Calls Mary Calls

Under this setting, the Bayesian Network assumption simplifies the joint probability into:

P(B,E,A, J,M) = P(B)P(E)P(A|B,E)P(J |A),P(M |A).

Using Bayes Rule, Bayesian Networks can be used to answer questions like: what is the probability that
there is a burglary given that John called to report it? Here B is playing the role of the query variable y,
J = 1 is playing the role of the evidence, and E,A,M are hidden. Notice that this choice was completely
arbitrary. Bayesian Networks are flexible enough that any variable can be query, evidence, or hidden. Another
advantage of this approach is that it reduces the parameter space. For example, a joint distribution with 5
binary random variables has 25−1 = 16 parameters, whereas the above has only 10. This gap becomes larger
as the number of variables increases. In addition, Bayesian Networks capture dependency in an efficient
manner, keeping only the relevant dependencies, using a graphical representation that provides insight and
interpretability. The challenge, of course, is to infer the graph and conditional probabilities form the data.

10.3.1 Structure Learning

The first task is to determine the graph structure given a set of training samples. Since Bayesian Networks
are flexible enough that any variable can be query, evidence, or hidden, we will assume the training data
has the form x1, . . . ,xN ∈ RD+1, where any of the D + 1 features can play the role of the query variable y.
Unfortunately, the number of possible graphs is super-exponential in the number of variables, turning the
problem of finding the optimal structure NP-complete. Hence, typical heuristics limit the search space of
possible structures, like the Chow-Liu algorithm, which infers a Bayesian Network with a tree structure that
maximizes the likelihood of the training data using the following steps:
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• Estimate the weight between each pair of nodes/variables as their mutual information:

I(xj, xk) =
∑
xj

∑
xk

P(xj, xk) log2
P(xj, xk)
P(xj)P(xk)

.

In our example, imagine data produces the following weights:

• Find amaximum-weight spanning tree (MST), that is, a tree with highest possible weights that connects
all nodes in the graph, for example, using Kruskal’s algorithm:

– Start with a graph with D + 1 nodes (one per variable), and no edges.

– Sort all the weights in descending order.

– For each t = 1, 2, . . . ,D(D + 1)/2, add the edge corresponding to the tth largest weight unless it
creates a cycle.

In our example the progression as t increases would look like:

• Pick an arbitrary node as the root, and assign edge directions.



Topic 10: Bayesian Learning 10-8

The intuition behind the Chow-Liu algorithm is that the mutual information is a proxy of the log-likelihood
of the graph G given i.i.d. data X = [ x1 x2 · · · xN ]T, because

1

N
logP(X|G) =

1

N
log

N∏
i=1

P(xi|G) =
1

N
log

N∏
i=1

D+1∏
j=1

P
(
xij

∣∣PG(xij)
)

=

D+1∑
j=1

1

N

N∑
i=1

logP
(
xij

∣∣PG(xij)
)

−−−−→
N→∞

D+1∑
j=1

E
[
logP

(
xj

∣∣PG(xj)
)]

=: −
D+1∑
j=1

H
(
xj

∣∣PG(xj)
)

=

D+1∑
j=1

[
I
(
xj,PG(xj)

)
−H(xj)

]
,

where the convergence follows by the Law of Large Numbers, and the last equality is the information theory
identity I(x, y) = H(x)−H(x|y); see for example Section 2.4 in Elements of Information Theory, by Thomas
Cover and Joy Thomas, Second Edition, John Wiley & Sons.

Since H(xj) does not depend on G, the maximum likelihood estimator can be determined through the
following optimization

max
G

D+1∑
j=1

I
(
xj,PG(xj)

)
.

Since each node in a tree only has one parent, in the case of trees this can be further simplified into

max
G

∑
(j,k)∈G

I(xj, xk),

where the notation (j, k) ∈ G indicates that G has an edge connecting nodes i and k. Finally, the choice of
the root does not affected the optimization, because mutual information is symmetric.

10.3.2 Parameter Learning

Given a graph structure G, either because it was known a priori or because it was estimated, the next step is
to infer the parameter θ of the problem, that is, the conditional probabilities P(xj|PG(xj)). Unsurprisingly,
one of the main approaches to do this is maximum likelihood, i.e.,

θ̂ = argmax
θ

logP(X|G,θ).

Continuing with our alarm example, suppose we are given the estimated tree structure above, and the
following data:

Samples
1 2 3 4 5 6 7 8 9 10

V
ar
ia
b
le
s x0 Burglary 1 0 0 0 1 0 0 0 0 1

x1 John 1 0 0 0 1 0 0 1 0 0
x2 Earthquake 0 0 0 0 1 0 0 0 0 0
x3 Marie 0 0 0 0 1 0 0 0 0 1
x4 Alarm 1 0 0 0 1 0 0 0 0 1
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Our goal reduces to finding the MLE of P(xj|xk) for each edge (j, k) ∈ G, which is given by the fraction of
samples in each case, i.e.,

P̂(xj|xk) =

∑N
i=1 1{xj=xij,xk=xik}∑N

i=1 1{xk=xik}
.

For instance,

P̂(J = 1|B = 1) =

∑N
i=1 1{Ji=1,Bi=1}∑N

i=1 1{Bi=1}
=

2

3
,

P̂(J = 1|B = 0) =

∑N
i=1 1{Ji=1,Bi=0}∑N

i=1 1{Bi=0}
=

1

7
.

Continuing this way we can obtain all the parameters:

Recall from our discussion above that if a feature xj has no samples that take value xj given feature xk, then
P(xj|xk) will be equal to zero, which would also zero out the calculation of the posterior P(xk|xj), neglecting
the information in all other probabilities involved. This is exactly what happened with P(E|B = 0) and
P(A|E = 1). To avoid this issue we can use Laplace smoothing, Lidstone smoothing, or m-estimators, given
by:

P̂(xj|xk) =

∑N
i=1 1{xj=xij,xk=xik} + mP(xj)∑N

i=1 1{xk=xik} + m
,

where m is a regularization term representing the number of virtual samples that we are adding to our
dataset, so that no probability is ever estimated to be exactly zero. Choosing m = 5 in our example, we
would obtain the following m-estimates instead:
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Given these estimates, we can answer questions like: what is the probability that there was a Burglary given
that only Mary called to report an alarm, and that there was no earthquake:

P(B|J,E,M,A) =
P(B)P(J,E,M,A|B)

P(J,E,M,A)
=

P(B)P(A|E)P(M |J)P(E|B)P(J |B)

P(J,E,M,A)

where the first equality follows by Bayes Rule, and the second one by the definition of conditional probability.
What probability do you obtain? Would you conclude that there was a Burglary, or not?

10.4 Maximum A Posteriori (MAP) Estimators

Like Laplace, and M-estimators, and the MLE, there exists another family of estimators, called maximum
a posteriori (MAP), which uses a Bayesian approach. Given data X = [x1, . . . ,xN]

T where each xi is
independently and identically distributed according to P(x|θ), the goal is to find the parameter θ that
maximizes the posterior distribution, i.e.,

θ̂MAP := argmax
θ

P(θ|X).

Using Bayes Rule we can rewrite this as:

θ̂MAP = argmax
θ

P(X|θ)P(θ)
P(X)

= argmax
θ

P(X|θ)P(θ). (10.7)

Notice that this is quite similar as the (MLE):

θ̂ML := argmax
θ

P(X|θ),

except for the P(θ) factor, which accounts for the prior probability of each parameter. Intuitively, the
prior leans our estimator towards our educated guess of what it might be. We formalize this in the next
proposition.
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Proposition 10.1. If there is no prior information, the MAP is equal to the MLE.

Proof. Having no prior information is equivalent to having θ being uniformly distributed. In this case P(θ)
is a constant. Hence

θ̂MAP := argmax
θ

P(θ|X) = argmax
θ

P(X|θ)P(θ) = argmax
θ

P(X|θ) =: θ̂ML.

Remark 10.1. Notice that the Naive Bayes estimator ŷ in (10.5) is one particular instance of (10.7) under
the naive assumption that each xj is independent.

Example 10.6 (Pharmaceutics). Scientists at a big pharmaceutical company have designed a COVID-
19 vaccine, and want to estimate its probability of success p⋆. To this end they will conduct a clinical
trial where they will test their treatment on N individuals, and record whether they react favorably.
This can be modeled as

x1, . . . , xN
iid∼ Bernoulli(p⋆),

and the goal is to estimate p⋆.

Pharmaceuticals design many treatments. Testing them on humans is difficult and expensive. Hence
they first experiment in-vitro or with animals to find the most effective ones. The particular treatment
that we are studying has already been tested in vitro, mice, rabbits and chimpanzees, and has proven
to be very effective. Hence we expect a priori that p⋆ will be closer to 1 than to 0. Thus, a good model
for the prior P(p) would be the Beta density

P(p) =
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1

with parameters α > β > 1, so that the density is skewed towards 1 (see Figure 10.1 for some intuition).
Using this prior information, the pharmaceutical will use a bayesian approach to estimate p⋆. The
likelihood function (conditional) of our data X = [ x1 x2 · · · xN]

T is

P(X|p) = p
∑N

i=1 xi (1− p)N−
∑N

i=1 xi = p1
TX (1− p)N−1TX,

where 1 ∈ RN is the vector with all ones, so that 1TX is shorthand for
∑N

i=1 xi. Hence

P(p|X) ∝ P(X|p)P(p) =
(
p1

TX (1− p)N−1TX
)(

Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1

)
∝ p1

TX+α−1 (1− p)N−1TX+β−1,

and so we recognize P(p|X) to be the Beta(α′, β′) density with parameters α′ = 1TX + α and β′ =

N − 1TX + β (here we are omitting the normalization factor Γ(α′+β′)
Γ(α′)Γ(β′) , which we know P(p|X) must

have, because it is a density and must integrate to 1). It follows that p̂MAP = argmaxp P(p|X) is the

point that maximizes the Beta(α′, β′) density, i.e., its mode: if α′, β′ > 1, this is given by α′−1
α′+β′−2 ; if α

′

or β′ < 1, it is one of the extreme points {0, 1}; if α′ = β′ = 1, then Beta(α′, β′) = Uniform[0, 1].
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Figure 10.1: Beta(α, β) densities are good models for prior distributions of proportions (like the probability of success p⋆).
Loosely speaking, the gap between α and β determines where we a priori think p⋆ is; the magnitudes of α and β determine how
confident we are. This way the parameters α and β determine our a priori bias and certainty. In our Pharmaceutics example,
if we believe the probability of success p⋆ to be closer to 1, we can model it as Beta(α, β) with α > β > 1, so that P(p) is biased
towards 1. If we are somewhat certain, we can take α = 7 and β = 2. If we are extremely certain, we can choose α and/or β to
be much larger.

Definition 10.3 (Conjugate prior). Whenever P(θ) has the same form (but possibly different parameters)
as P(θ|X), we say that P(θ) is a conjugate prior of P(X|θ).

Example 10.7. From Example 10.6 we conclude that Beta(α, β) is the conjugate prior of Bernoulli(p).

10.5 The Bernstein-von Mises Theorem

Notice that to find the MAP one inherently needs to know the posterior distribution P(θ|X). For instance,
in Example 10.6 we first discovered that the posterior distribution was Beta, and then found the parameter
that maximized such distribution (in this case, the mode). In general, finding the posterior may not always
be as easy and clean as in Example 10.6. Fortunately, the Bernstein-von Mises Theorem shows that for a
sufficiently large number of samples, the posterior distribution is Normal, centered around the true parameter
with diminishing variance, independent of the prior.

Definition 10.4 (Total Variation Distance). Given two probability measures P and Q on the same sigma-
algebra A, their total variation distance is defined as

∥P−Q∥TV := sup
E∈A

∣∣P(E)−Q(E)
∣∣.

Intuitively, it is the largest possible difference that the two distributions assign to the same event.

Theorem 10.1 (Bernstein-von Mises). LetX = [x1, . . . ,xN]
T, with xi

iid∼ P(x|θ). Suppose d2 logP(x|θ)
dθ2

exists, and that the prior P(θ) is continuous and strictly positive on the true parameter θ⋆. Also suppose
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that for every ϵ > 0 there exists a sequence of tests ϕN such that

lim
N→∞

Eθ⋆ [ϕN] = 0 and lim
N→∞

sup
θ:∥θ−θ⋆∥≥ϵ

Eθ[1− ϕN] = 0.

Then as N → ∞ ∥∥∥∥P (θ|X)−N
(
θ⋆ +

1

N
∆θ⋆ ,

1

N
I−1
θ⋆

)∥∥∥∥
TV

−−→ 0,

where

∆θ⋆ := I−1
θ⋆

N∑
i=1

d logP(xi|θ)
dθ

∣∣∣
θ=θ⋆

, and Iθ⋆ := −E
[
d2 logP(x|θ)

dθ2

∣∣∣
θ=θ⋆

]
denotes the one-sample Fisher-information matrix.

Proof. The proof follows as a consequence of the central limit theorem, which says that if z1, . . . , zN are

i.i.d. with mean µ and variance σ2, then
√
N
σ

(∑N
i=1 zi − µ

)
is asymptotically distributed N (0, 1). For a

detailed proof see Section 5.2.2 in Statistiques Asymptotiques, by Elisabeth Gassiat.

The assumptions of the Theorem are quite weak, and satisfied in most common cases. To learn more see
pages 145-146 of Asymptotic Statistics by Aad van der Vaart, Cambridge University Press, 1998.

Since total variation convergence implies convergence in distribution, Theorem 10.1 implies that as N → ∞.

θ|X d−−−→ N
(
θ⋆ +

1

N
∆θ⋆ ,

1

N
I−1
θ⋆

)
.

Notice the similarity of this result with the asymptotic distribution of the MLE.

The Bernstein-von Mises Theorem establishes an important link between Bayesian inference and Frequentist
statistics, showing that the the effect of the prior decreases with the number of samples. To build some
intuition, suppose you initially believe that a coin is loaded to favor heads (Bernoulli prior with p > 1/2). If
you toss that coin a million times and realize that 90% of the time it falls tails, would you still believe the
coin favors heads? In other words, would you still believe a posteriori that p > 1/2? How many coin tosses
would suffice to convince you of the truth? What if your initial belief had been accurate? The Bernstein-von
Mises Theorem formalizes this intuition that overwhelming evidence (large samples) will reveal the truth,
regardless of a correct or incorrect initial belief (prior). Finally, another consequence of the Bernstein-von
Mises Theorem is that MAP converges to the MLE as the number of samples grows.

Example 10.8. In Example 10.6, the MAP is the mode of the posterior distribution P(p|X) =
Beta(α′, β′). If α′, β′ > 1, this is given by:

p̂MAP =
α′ − 1

α′ + β′ − 2
=

1TX+ α− 1

�
��1TX+ α+N−�

��1TX+ β − 2
=

1TX+ α− 1

N + α+ β − 2
−−−−−→
N→∞

p⋆.
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where the last implication follows because

1TX

N
=

1

N

N∑
i=1

xi −−−−−→
N→∞

p⋆

by the Law of Large Numbers. On the other hand, the MLE is the maximizer of the likelihood P(X|p) =
Bernoulli(p), given by:

p̂ML = argmax
p∈[0,1]

P(X|p) = argmax
p∈[0,1]

p1
TX (1− p)N−1TX =

1TX

N
=

1

N

N∑
i=1

xi −−−−−→
N→∞

p⋆.

On the other hand, if p⋆ = 0 or 1, then so will be p̂MAP and p̂ML. We thus conclude that p̂MAP → p̂ML

as N → ∞, as implied by Theorem 10.1.

10.6 Simulations

Simulations are not only good to verify our results. They are also good to build intuition, test theories and
draw conclusions. In this section we will further study Example 10.6 to compare the MAP and the MLE. We
will verify our intuition that if our prior is accurate, the MAP will be better, but if our prior is inaccurate,
the MAP will be worse.

Recall that the treatment in Example 10.6 has already shown great results on other organisms, so we believe
its probability of success on humans p⋆ to be closer to 1 than to 0. With this in mind we will use a Beta(7, 2)
as prior, so that the density is skewed towards 1. (see Figure 10.1 to build some intuition).

Next we will generate a random vector X ∈ RN with i.i.d. Bernoulli(p⋆) entries, so that the ith entry in X
simulates whether the ith patient reacted favorably to the treatment. We showed in Example 10.6 that the
posterior distribution P(p|X) is Beta(α′, β′) with parameters α′ = 1TX+ α and β′ = N− 1TX+ β.

Let us now consider two scenarios:

(i) p⋆ = 0.7. This would be a case when our prior is correct (Figure 10.2—left). We can see that even
with a few samples (N = 3), our estimate p̂MAP = argmaxp∈[0,1] P(p|x) would be very close to p⋆. The
code for this simulation is in Appendix A.

(ii) p⋆ = 0.3. This would be a case when our prior is incorrect (Figure 10.2—right). We can see that
unless we have a lot of samples (N large), our estimate p̂MAP could be very far from p⋆! In words, the
prior is pulling the posterior towards it. This is one of the dangers of bayesian estimation: the bias
induced by the prior might make it harder to see the truth. What do you think would happen if we
use a stronger prior, like P(p) =Beta(100, 16)? How would this affect the posterior P(p|x)? Try it out
and see; you only need to change a few lines of code. Do the results match your intuition?

Case (ii) shows one of the risks of bayesian estimation. Now the question is: is it worth it? In other words,
if our prior is correct, do we really have that much to gain? Let us find out by comparing the MAP with the

MLE. Since xi
iid∼ Bernoulli(p⋆), it follows that p̂ML =

∑N
i=1 xi has a Binomial(N,p⋆) distribution (scaled by

1/N). Figure 10.3 shows a comparison of the distributions of p̂MAP and p̂ML for different scenarios.

These experiments show that the prior is essentially biasing us towards our beliefs. If our beliefs are correct,
the MAP will be more accurate than the MLE (given the same number of samples N). In contrast, if our
beliefs are incorrect, it will take more samples to correct the prior, and so the MAP will be more inaccurate.
This experiment also verifies that the MAP converges to the MLE as N grows, as implied by Theorem 10.1.
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p⋆ = 0.7 p⋆ = 0.3
(With correct prior) (With incorrect prior)

Figure 10.2: Posterior distribution P(p|x) in Example 10.6. In expectation, 1Tx = Np⋆, so the expected (theoretical) posterior
(plotted in solid lines) is Beta(Np⋆ + α,N(1− p⋆) + β). Dotted lines are the posterior distributions given a particular sample.
The code for this simulation is in Appendix A.
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Figure 10.3: Distribution of the MAP and the MLE for different values of p⋆ and N. p̂MAP ∼ Beta(Np⋆ + α,N(1 − p⋆) + β)
and p̂ML ∼ Binomial(N, p⋆). The code for this is in Appendix B.
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A Code for Simulation of Example 10.6

1 clear all; close all; clc; warning('off','all');
2

3 % === Code to simulate the posterior distribution of p ===
4 % === See Example 10.5.
5

6 p star = 0.7; % True probability of success.
7 alpha = 7; % Parameter of prior distribution.
8 beta = 2; % Parameter of prior distribution.
9 NN = [50,15,3]; % Sample sizes we will try.

10

11 % Create figure.
12 figure(1);
13 axes('Box','on');
14 hold on;
15

16 % Plot expected posterior distribution.
17 p = 0:0.01:1; % all possible values of p.
18 color = ['b','r','k']; % For plotting.
19 for n=1:length(NN)
20

21 N = NN(n); % Number of samples.
22 alpha prime = N*p star + alpha; % Parameter of expected posterior distribution.
23 beta prime = N*(1-p star) + beta; % Parameter of expected posterior distribution.
24 posterior = betapdf(p,alpha prime,beta prime); % Expected posterior distribution.
25 plot(p,posterior,color(n),'LineWidth',4);
26

27 end
28

29 % Legends.
30 legend(['N=',num2str(NN(1))],['N=',num2str(NN(2))],['N=',num2str(NN(3))],...
31 'Interpreter','latex','fontsize',20,'Location','Northwest');
32

33 % Plot posterior distributions for a particular sample [X 1,...X N].
34 for n=1:length(NN)
35

36 N = NN(n); % Number of samples.
37 X = rand([N,1]) < p star; % Sample.
38 alpha prime = sum(X) + alpha; % Parameter of posterior distribution based on sample.
39 beta prime = N - sum(X) + beta; % Parameter of posterior distribution based on sample.
40 posterior = betapdf(p,alpha prime,beta prime); % Posterior distribution based on sample.
41 plot(p,posterior,[color(n),':'],'LineWidth',2);
42

43 end
44

45 % Make figure look sexy.
46 axis tight;
47 ylabel('$P(p | \textbf{X})$','Interpreter','latex','fontsize',20);
48 xlabel('','Interpreter','latex','fontsize',20);
49 set(gca,'XTick',[0,p star,1],'xticklabel',{'0','p*','1'},'fontsize',20);
50 set(gca,'YTick',[],'yticklabel',[]);
51 set(gcf,'PaperUnits','centimeters','PaperSize',[30,10],'PaperPosition',[0,0,30,10]);
52

53 % Save figure.
54 set(gcf, 'renderer','default');
55 figurename = 'MAP.pdf';
56 saveas(gcf,figurename);
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B Code for Comparison of MAP and MLE in Figure 10.3

1 clear all; close all; clc; warning('off','all');
2

3 % === Code to simulate the posterior distribution of p ===
4 % === See Example 10.5
5

6 p star = 0.7; % True probability of success.
7 alpha = 7; % Parameter of prior distribution.
8 beta = 2; % Parameter of prior distribution.
9 NN = [50,15,3]; % Sample sizes we will try.

10

11 % Plot distributions of the MAP and the MLE.
12 for n=1:length(NN)
13

14 N = NN(n); % Number of samples.
15

16 % Create figure
17 figure(n);
18 axes('Box','on');
19 hold on;
20

21 % MAP distribution.
22 p = 0:0.01:1; % all possible values of p (continuous).
23 alpha prime = N*p star + alpha; % Parameter of expected posterior distribution.
24 beta prime = N*(1-p star) + beta; % Parameter of expected posterior distribution.
25 posterior = betapdf(p,alpha prime,beta prime); % Expected posterior distribution.
26 h1 = plot(p,posterior,'k','LineWidth',4);
27

28 % MLE distribution.
29 p = 0:N; % all possible values of rho (discrete).
30 likelihood = binopdf(p,N,p star); % Distribution of the MLE.
31 likelihood = likelihood/max(likelihood)*max(posterior);
32 h2 = plot(p/N,likelihood,'b-o','LineWidth',2);
33

34 % Make figure look sexy.
35 axis tight;
36 ylabel('','Interpreter','latex','fontsize',20);
37 xlabel('','Interpreter','latex','fontsize',20);
38 set(gca,'XTick',[0,p star,1],'xticklabel',{'0','p*','1'},'fontsize',20);
39 set(gca,'YTick',[],'yticklabel',[]);
40 title(['N$ = ',num2str(N),'$'],'Interpreter','latex','fontsize',25);
41 legend({'posterior $P(p | \textbf{X})$',...
42 'likelihood $P(\textbf{X} |p)$'},...
43 'Interpreter','latex','fontsize',20,'Location','Northwest');
44 set(gcf,'PaperUnits','centimeters','PaperSize',[20,15],'PaperPosition',[0,0,20,15]);
45

46 % Save figure.
47 set(gcf, 'renderer','default');
48 figurename = ['MAPvsMLE ',num2str(N),'.pdf'];
49 saveas(gcf,figurename);
50

51 end
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