
CS 760: Machine Learning Spring 2024

Topic 11: Support Vector Machines

Instructor: Daniel L. Pimentel-Alarcón © Copyright 2024

DO NOT POLLUTE! AVOID PRINTING, OR PRINT 2-SIDED MULTIPAGE.

11.1 Introduction

Support vector machines (SVMs) are considered one of the best “out of the box” classifiers. Similar to
logistic regression and random forests, their main purpose is prediction/classification, and are used for
similar applications (e.g. distinguish between healthy and Alzheimers). However, SVMs are a more geometric
approach. The main idea is to think of each sample as a point in a high-dimensional space, and classify it
according to the region where it is located with respect to a boundary (see Figure 11.1). The challenge is to
find such separating/classifying boundary.

Figure 11.1: An SVM classifies each point according to the region where it is located with respect to a boundary.

11.2 Hyperplanes

Hyperplanes lie at the heart of SVMs. Intuitively, a hyperplane is the generalization of a line and a plane (in
2 and 3 dimensions) to higher dimensions. In words, hyperplanes are subspaces almost as big as the whole
space. More formally, a hyperplane H ⊂ RD is a linear subspace of dimension D−1 (see Figure 11.2 to build
some intuition).

Recall from linear algebra that the dimensions of a subspace U ⊂ RD and its orthogonal complement
U⊥ ⊂ RD add to the ambient dimension, i.e.,

D = dim(U) + dim(U⊥),

which means that dim(H⊥) = 1, i.e., H⊥ is a line. As such, it is characterized by a single vector. Let θ ∈ RD

be the vector spanning H⊥. Also recall that U is the collection of all points orthogonal to U⊥. Consequently,

11-1

Topic 11: Support Vector Machines 11-2

Figure 11.2: Hyperplanes are subspaces of dimension equal to the whole space minus 1. Left: A line in R2 is a hyperplane.
Right: A plane in R3 is a hyperplane. Hyperplanes divide the whole space in two halves, providing a natural classifying border.
Each hyperplane Hθ is characterized by the vector θ spanning its orthogonal complement H⊥. Question: Is a line in R3 a
hyperplane?

we can characterize H as the collection of all points in RD that are orthogonal to θ. To make this clear we
use the following notation to denote the hyperplane orthogonal to θ:

Hθ :=
{

x ∈ RD : ⟨x,θ⟩ = 0
}
,

where ⟨x,θ⟩ = θTx denotes the inner product (see Figure 11.2 to build some intuition). Hyperplanes are
powerful classification tools because they divide the space in two halves: the points x above the hyperplane,
meaning ⟨x,θ⟩ > 0, and the points x below the hyperplane, meaning ⟨x,θ⟩ < 0 (see Figure 11.2).

Like all subspaces, hyperplanes must cross the origin. A more general model is an affine hyperplane, that
is, a translated hyperplane. More precisely, we define the affine hyperplane Hθθ0 as the hyperplane with θ
as orthogonal direction, translated a distance θ0 from the origin in the opposite direction of θ, such that if
x is a point in the centered hyperplane, then the point x− θ0

θ
∥θ∥ will be in the affine hyperplane. That is:

Hθθ0 =

{
x− θ0

θ

∥θ∥
∈ RD : ⟨x,θ⟩ = 0

}
.

Equivalently,

Hθθ0 :=

{
x ∈ RD : ⟨x+ θ0

θ

∥θ∥
,θ⟩ = 0

}
.

Notice that 〈
x+ θ0

θ

∥θ∥
,θ

〉
= ⟨x,θ⟩+ θ0

∥θ∥
⟨θ,θ⟩ = ⟨x,θ⟩+ θ0∥θ∥.

Defining the so-called bias as b := θ0∥θ∥, we can equivalently characterize Hθ,θ0 in terms of θ and b as the
set

Hθb :=
{
x ∈ RD : ⟨x,θ⟩+ b = 0

}
.

In what follows we use Hθθ0 and Hθb interchangeably.

Topic 11: Support Vector Machines 11-3

11.3 Maximal Margin Classifier

SVMs happen to be a generalization of themaximal margin classifier (MMC), which uses an affine hyperplane
as the separating/classifying border. Notice, however, that given some data, it is possible that there are
infinitely many affine hyperplanes that could separate it, for example:

As the name suggests, the MMC finds the affine hyperplane H⋆ that separates data x1, . . . ,xN ∈ RD into
classes y1, . . . , yN ∈ {−1, 1} with the largest possible margin M:

All vectors that are exactly within M distance of the affine hyperplane are called support vectors. To
determine this distance, recall from linear algebra and projections that the distance between a point xi and
the hyperplane Hθ is

δ(xi,Hθ) =
⟨xi,θ⟩
∥θ∥

Topic 11: Support Vector Machines 11-4

Then notice that δ(xi,Hθθ0) is the same as δ(xi + θ0
θ

∥θ∥ ,Hθ):

It follows that

δ(xi,Hθθ0) = δ(xi + θ0
θ

∥θ∥
,Hθ) =

⟨xi + θ0
θ

∥θ∥ ,θ⟩
∥θ∥

=
⟨xi,θ⟩+ θ0∥θ∥

∥θ∥
=

θTxi + b

∥θ∥
.

To ensure that each xi is always on the right side of the affine hyperplane (determined by the label yi) we
can define the margin between point xi and the affine hyperplane as:

Mi :=
yi(θ

Txi + b)

∥θ∥
,

to ensure that

(a) if yi = 1, then θTxi + b > 0, indicating that xi is above the affine hyperplane,

(b) if yi = −1, then θTxi + b < 0, indicating that xi is below the affine hyperplane,

so that if the signs of yi and if θTxi + b do not match, then the margin is negative, indicating that xi was
misclassified.

Topic 11: Support Vector Machines 11-5

Since we want that the margin is large for all points, we need to guarantee that the point with the minimum
margin is as large as possible. In other words, we want to find

(θ⋆,b⋆) := argmax
θ,b

min
i

yi(θ
Txi + b)

∥θ∥
. (11.1)

This problem looks quite complicated. However, notice that Mi is invariant to scalings of θ. That is,

yi(θ
Txi + b)

∥θ∥
=

yi(θ
Txi + θ0∥θ∥)

∥θ∥
=

yi(cθ
Txi + θ0∥cθ∥)
∥cθ∥

∀ c ̸= 0.

So we can scale θ so that mini yi(θ
Txi + b) = 1, and rewrite (11.1) as

(θ⋆,b⋆) := argmax
θ,b

1

∥θ∥
subject to min

i
yi(θ

Txi + b) = 1.

The intuition here is that since mini yi(θ
Txi + b) = 1, the minimum margin over all samples is yi(θ

Txi+b)
∥θ∥ =

1
∥θ∥ . Moreover, since the condition that yi(θ

Txi + b) ≥ 1 for every i implies mini yi(θ
Txi + b) = 1, we can

further rewrite (11.1) as

(θ⋆,b⋆) := argmax
θ,b

1

∥θ∥
subject to yi(θ

Txi + b) ≥ 1 ∀ i = 1, . . . ,N. (11.2)

In words, (11.2) is maximizing the general margin M := 1
∥θ∥ such that the margin of each data point Mi is

at least as large as M (guaranteed by the constraint, which is equivalent to: Mi :=
yi(θ

Txi+b)
∥θ∥ ≥ 1

∥θ∥ =: M).

11.4 Lagrange Multipliers and the Dual Problem

In practice, to solve a constrained problem like (11.2) we use Lagrange Multipliers and the dual problem. To
build some intuition about this method, consider a simpler optimization problem:

θ⋆ := argmin
θ∈R2

∥θ∥2 subject to θ1 + θ2 ≥ 1, (11.3)

Notice that the constraint can be written as θ1 + θ2 − 1 ≥ 0. If we plot these two functions f(θ) = ∥θ∥2 =
θ21 + θ22 and g(θ) = θ1 + θ2 − 1, we can see that the minimum of f(θ) under the constraint g(θ) ≥ 0 is
attained when the gradients of these two functions point in the same direction, i.e., when

∇f(θ) = λ∇g(θ), (11.4)

where the so-called lagrange multiplier λ is a non-negative scalar, because we want the gradients to point in
the same direction, but they may be of different magnitudes.

0 1

0

1

Topic 11: Support Vector Machines 11-6

Defining the Lagrangian as

L(θ, λ) := f(θ)− λg(θ),

we can write (11.4) as

∇L(θ, λ) = 0. (11.5)

We thus conclude that the minimizer that we are looking for must satisfy (11.5) for some λ. In our example,
∇L(θ, λ) has entries

d

dθi
L(θ, λ) =

d

dθi

[
θ21 + θ22 − λ(θ1 + θ2 − 1)

]
= 2θi − λ. (11.6)

Setting these to zero according to (11.5) and solving for θ we obtain the minimizer we were looking for:

θ = λ

[
1/2
1/2

]
. (11.7)

The only problem is that it is in terms of λ, which we do not know. To discover what λ should be, let

θλ := argmin
θ

L(θ, λ) subject to ∇L(θ, λ) = 0,

and notice that L(θλ, λ) is a lower bound on f(θ⋆). To see this write

L(θλ, λ) = min
θ:∇L=0

L(θ, λ) ≤ L(θ⋆, λ) = f(θ⋆)− λg(θ⋆) ≤ f(θ⋆),

where the last inequality follows because λ ≥ 0, and since θ⋆ satisfies the constraint by definition, g(θ⋆) ≥ 0.
Since we want the closest lower bound on f(θ⋆), it makes sense that we try to find

λ̂ := argmax
λ≥0

min
θ:∇L=0

L(θ, λ) = argmax
λ≥0:∇L=0

L(θλ, λ),

which is often called the dual problem. In our example, θλ can be determined using our standard Optimization
101 approach: take the derivative (which we already did in (11.6)), set to zero, and solve for θ to get

θλ = λ

[
1/2
1/2

]
, (11.8)

same as in (11.7). This solution already satisfies ∇L(θλ, λ) = 0 by construction, so we don’t need to worry
about this constraint (as we will see below when studying the MMC case, in general the constraint is not
always automatically satisfied, and needs to be carried). It follows that

L(θλ, λ) = λ− λ2

2
.

To maximize this we follow our standard Optimization 101 approach once more: first take the derivative:

d

dλ
L(θλ, λ) = 1− λ,

then set it to zero, and solve for λ to obtain λ̂ = 1. Plugging this back into (11.8) we get

θ̂ := θλ̂ = λ̂

[
1/2
1/2

]
=

[
1/2
1/2

]
.

As shown before, in general f(θ̂) is a lower bound on f(θ⋆), and their difference is known as the dual gap.
Whenever this difference is zero, i.e., f(θ̂) = f(θ⋆), we say that there exists strong duality. There are many
results that establish conditions for strong duality, often called constraint qualifications. One important
example are Slater’s conditions:

Topic 11: Support Vector Machines 11-7

Theorem 11.1 (Slater’s Theorem). There exists strong duality for the problem

min
θ

f(θ) subject to gi(θ) ≥ 0 ∀ i = 1, . . . ,N (11.9)

if f and every gi are convex, and there exists some θ that satisfies all constraints with strict inequalities.

Proof. See Section 5.3.2 of Convex Optimization, by Stephen Boyd and Lieven Vandenberghe, 7th Edition,
2009.

Since the Slater’s conditions in Theorem 11.1 are satisfied for problem (11.3), we conclude that its solution
is

θ⋆ = θ̂ =

[
1/2
1/2

]
.

11.5 Finding the Maximal Margin Classifier

Recall that our goal is to solve (11.2) to find the affine hyperplane (defined by θ⋆ and θ0) that best separates
our data, i.e., the affine hyperplane with the largest margin. Since maximizing the margin 1

∥θ∥ is equivalent

to minimizing ∥θ∥ or ∥θ∥2, we can rewrite (11.2) as:

(θ⋆,b) := argmin
θ,θ0

∥θ∥2 subject to yi(θ
Txi + b) ≥ 1 ∀ i = 1, . . . ,N. (11.10)

Notice the striking similarities between (11.10) and the Example problem in (11.3). Defining

f(θ) = ∥θ∥2 =

D∑
j=1

θ2j ,

gi(θ,b) = yi(θ
Txi + b)− 1,

we can see that (11.10) is one instance of the general optimization problem with N constraints in (11.9).
So we will solve it by the method of Lagrange multipliers, which instead of (11.10), aims to solve the dual
problem

max
λ≥0

min
θ,b:∇L=0

L(θ,b,λ) (11.11)

where λ := [λ1 λ2 · · · λN]T is the Lagrange multipliers vector, also known as dual variables, one for each
constraint. In this case the Lagrangian is

L(θ,b,λ) = ∥θ∥2 −
N∑
i=1

λi

[
yi(θ

Txi + b)− 1
]
,

The first step is to find

(θλ,bλ) := argmin
θ,b:∇L=0

L(θ,b,λ),

Topic 11: Support Vector Machines 11-8

Using our standard Optimization 101 approach, we first compute

d

dθ
L(θ,b,λ) = 2θ −

N∑
i=1

λiyixi,

d

db
L(θ,b,λ) = −

N∑
i=1

λiyi.

It follows that the constraint ∇L(θ,b,λ) = 0 will be met as long as

θλ =
1

2

N∑
i=1

λiyixi (11.12)

λTy =

N∑
i=1

λiyi = 0, (11.13)

where y = [y1 y2 · · · yN]
T. Using this information, we see that

L(θλ,bλ,λ) =

N∑
i=1

λi −
1

4

N∑
i=1

N∑
j=1

λiλjyiyjx
T
i xj.

Hence, it all boils down to solving the dual:

λ̂ := argmax
λ≥0:∇L=0

L(θλ,bλλ) = argmax
λ≥0:λTy=0

N∑
i=1

λi −
1

4

N∑
i=1

N∑
j=1

λiλjyiyj⟨xi,xj⟩, (11.14)

which we can solve using standard optimization techniques, like gradient descent. Notice that the constraint
∇L(θ,b,λ) is equivalent to (11.12) and (11.13). While the condition (11.12) is no longer relevant in the
right hand side of (11.14), the condition (11.13) needs to be carried. In general λ̂ will be a sparse vector.
Its non-zero entries correspond to points that lie in the margin, i.e., the support vectors. The solution will
not change if the samples corresponding to zero entries in λ̂ are removed.

Once we have λ̂, we can plug it back into (11.12) to obtain θ̂ := θλ̂. To recover b, observe that for any

support vector xi (whose corresponding value λi > 0), we have yi(θ̂
Txi + b) = 1, because xi lies exactly on

the margin. Multiplying both sides by yi we have y2i (θ̂
Txi + b) = yi, or equivalently, θ̂

Txi + b = yi We thus
conclude that

b̂ = yi − θ̂Txi.

Finally, since problem (11.10) satisfies the Slater’s conditions in Theorem 11.1, we conclude that its minimizer

(θ⋆,b⋆) is the pair (θ̂, b̂).

Remark 11.1. Given a new data point x, its class is given by the sign of θ̂Tx+ b̂, which we can rewrite as

θ̂Tx+ b̂ = θT
λx+ b̂ =

1

2

N∑
i=1

λiyix
T
i x+ b̂ =

1

2

N∑
i=1

λiyi⟨x,xi⟩+ b̂

where we can see that the class of x is determined by its weighted inner product with the support vectors
(because for all other vectors λi = 0). Hence classification can be done quite efficiently.

Topic 11: Support Vector Machines 11-9

11.6 Support Vector Classifier

It is pretty clear that a hyperplane may not classify two classes perfectly:

The support vector classifier (SVC), also known as the soft margin classifier, arises as an idea to address
this problem. They key idea is to allow some wiggle room by letting some points to be misclassified, using
the following optimization instead of (11.10)

(θ⋆,b⋆) := argmin
θ,b,ϵ≥0

∥θ∥2 + E∥ϵ∥1 subject to yi(θ
Txi + b) ≥ (1− ϵi) ∀ i = 1, . . . ,N, (11.15)

where ϵ = [ϵ1 ϵ2 · · · ϵN]T quantifies the error, a.k.a. slack, that will be allowed in each sample, and the tuning
parameter E ≥ 0 determines the relative importance between maximizing the margin 1

∥θ∥ and minimizing the

error ∥ϵ∥1. The constraint yi(θ
Txi +b) ≥ (1− ϵi) ensures that the margin of the ith sample Mi =

yi(θ
Txi+b)
∥θ∥

is larger than the general margin M = 1
∥θ∥ , or maybe a little smaller; how little is determined by ϵi, which

should be greater than zero (otherwise the constraint would enforce Mi to be a little larger than M).

This type of approach is often called a relaxation, and will allow some points to be inside the margin, and
even on the wrong side of the affine hyperplane:

Using the same techniques as before, we can show that (11.15) can be solved through its dual, given by

λ̂ = argmax
E≥λ≥0:λTy=0

N∑
i=1

λi −
1

4

N∑
i=1

N∑
j=1

λiλjyiyj⟨xi,xj⟩. (11.16)

The main difference between MMC and SVC, i.e., between (11.14) and (11.16), is the constraint that λ ≤ E.
The intuition is that without this slack constraint, if xi is misclassified, then λi → ∞. The slack constraint
limits λ so that misclassifications are allowed. In general, a solution to (11.16) will be a sparse vector: its
entries equal to E correspond to points on the wrong side of the margin (not necessarily misclassified); its
entries smaller than E and larger than zero, i.e., the ones satisfying E > λi > 0, correspond to points in the

Topic 11: Support Vector Machines 11-10

margin, i.e., the support vectors; its zero entries correspond to all other correctly classified points, whose
removal does not change the solution.

Given λ̂, θ̂ = 1
2

∑N
i=1 λ̂iyixi, as in the MMC case, and b̂ = yi − θ̂Txi for any support vector xi, i.e., one such

that E > λi > 0. Given a new data point x, its class is given by the sign of θ̂Tx+ b̂, same as before.

11.7 Nonlinear Boundaries

It is pretty clear that not all datasets can be divided by a linear boundary:

One advantage of the MMC and the SVC is that one can easily adapt them to produce nonlinear boundaries
using a few (but smart) changes that transform the feature space into a new space where data can be
separated with a linear boundary that corresponds to a non-linear boundary in the original space. For
example, with the cartesian-to-polar coordinates mapping:

ϕ :

[
x1
x2

]
7→

[√
x21 + x22

arctan x2

x1

]
=:

[
r
α

]
,

one can use a linear boundary in the transformed space (r, α) to classify data that is non-linearly separable
in the original feature space (x1, x2):

As another example, consider the following mapping:

ϕ :

[
x1
x2

]
7→

 x1
x2
x1x2

 =:

x1x2
x3

 ,

which can be used to lift non-linearly separable data to a linearly separable higher-dimensional space:

Topic 11: Support Vector Machines 11-11

Given a feature map ϕ : RD → RD′
, the problem reduces to finding the linear boundary that separates the

transformed data, i.e.,

(θ⋆,b⋆) := argmin
θ,b,ϵ≥0

∥θ∥2 + E∥ϵ∥1 subject to yi(θ
Tϕ(xi) + b) ≥ (1− ϵi) ∀ i = 1, . . . ,N.

(11.17)

Notice that the only difference between (11.17) and (11.15) is that we are replacing xi with ϕ(xi), which,
depending on ϕ, may also change the size of θ, but nothing else. Hence the dual of (11.17) is

λ̂ = argmax
E≥λ≥0:λTy=0

N∑
i=1

λi −
1

4

N∑
i=1

N∑
j=1

λiλjyiyj⟨ϕ(xi),ϕ(xj)⟩. (11.18)

Given λ̂, θ̂ = 1
2

∑N
i=1 λ̂iyiϕ(xi), and b̂ = yi − θ̂Tϕ(xi) for any support vector ϕ(xi), i.e., one such that

E > λi > 0. Given a new data point x, its class is given by the sign of θ̂Tϕ(x) + b̂.

Now notice that (11.18) only depends on the inner products ⟨ϕ(xi),ϕ(xj)⟩. Hence, to design powerful non-
linear boundaries, one does not need to design ϕ. In fact, one does not even require to explicitly compute
ϕ. It suffices to design and compute its inner product, often called kernel:

K(xi,xj) := ⟨ϕ(xi),ϕ(xj)⟩.

For example, one may define

K(xi,xj) = (xT
i xj + 1)d, (11.19)

which would produce a degree-d polynomial. For instance, with xi ∈ R2 and d = 2, we would get:

K(xi,xj) = (xi1xj1 + xi2xj2 + 1)2,

from which we can derive its corresponding feature mapping

ϕ(x) =
[
x21 x22

√
2x1x2

√
2x1

√
2x2 1

]T
.

Besides the polynomial kernel in (11.19), and the linear kernel, which is simply K(xi,xj) := ⟨xi,xj⟩, another
very popular choice is the radial basis function (RBF) or gaussian kernel:

K(xi,xj) = e−γ∥xi−xj∥2

, (11.20)

where γ ≥ 0 is a parameter, and its corresponding feature mapping is the concatenation of the D infinite-
dimensional vectors:

ϕ(x) = e−γx2

[
1

√
2γ

1!
x

√
(2γ)2

2!
x2

√
(2γ)3

3!
x3 · · ·

]T

,

which can be derived from the Taylor series expansion of ex. Depending on the dataset at hand, one kernel
may be better than another, and there may be more than one correct option.

Topic 11: Support Vector Machines 11-12

The support vector machine (SVM) is simply a generalization of the SVC that uses a kernel function K and
its corresponding feature mapping ϕ.

11.8 Kernel Algebra

More formally, a kernel K(x,x′) is a function that quantify the similarity between vectors x,x′ ∈ RD, and
can be expressed as the inner product ⟨ϕ(x),ϕ(x′)⟩ for some feature mapping ϕ : RD → RD′

. The kernels
in (11.19) and (11.20) give two examples. In general, one may construct a new kernel from existing ones,
because kernels are closed under positive scaling, sum, product, point-wise limit, and composition with a
power series.

For example, given two kernel functionsK1(x,x
′),K2(x,x

′), their linear combination c1K1(x,x)+c2K2(x,x
′)

is also a kernel. Similarly, if K(x,x′) is a kernel, then so is eK(x,x′). Given kernels K1(x,x
′) and K2(x,x

′)
with feature mappings ϕ1(x) and ϕ2(x), the following table outlines some operators that result in valid
kernels, and their respective feature mappings.

Kernel composition Feature mapping

K(x,x′) = K1(x,x
′) +K2(x,x

′) ϕ(x) = [ϕT
1 (x) ϕT

2 (x)]
T

K(x,x′) = cK1(x,x
′), c > 0 ϕ(x) =

√
cϕ1

K(x,x′) = K1(x,x
′)K2(x,x

′) ϕ(x)ℓ = ϕ1i(x) ϕ2j(x)

K(x,x′) = xTAx′, with A p.s.d. ϕ(x) = LTx, where A = LLT

K(x,x′) = f(x)f(x′)K1(x,x
′) ϕ(x) = f(x)ϕ1(x)

11.9 Advantages and Disadvantages

• Since the learning task is framed as a convex optimization problem, SVM’s can find globally optimal
solutions, in contrast to other formulations, like neural networks, which suffer from local minima.

• Classification can be done quite efficiently, using nothing but inner product of the support vectors.

• Kernels provide a powerful option to produce non-linear boundaries.

• Using kernels one may compute distances between high-dimensional feature mappings without explicitly
computing the mapping.

• There is a wide range of optimization methods to learn SVM’s.

• One SVM can represent only one binary classification task. Multi-class problems require multiple
SVM’s and additional encoding.

Topic 11: Support Vector Machines 11-13

• The empirical performance of SVM’s is comparable to the state-of-the-art for many tasks.

• Kernels can be extended for other tasks, like anomaly detection and regression.

11.10 SVM Recipe

To summarize, here is how we would use SVM’s in a typical scenario:

• Collect features xi ∈ RD and labels yi ∈ {−1, 1} from N samples.

• Pick a kernel function K(xi,xj) with its respective feature mapping ϕ(x).

• Use your favorite optimization method to solve the dual problem (11.18) to obtain λ̂.

• Compute θ̂ = 1
2

∑N
i=1 λ̂iyiϕ(xi)

• Given any i such that E > λi > 0, compute b̂ = yi − θ̂Tϕ(xi)

• Given a new sample x, its class is given by the sign of θ̂Tϕ(x) + b̂.

	Introduction
	Hyperplanes
	Maximal Margin Classifier
	Lagrange Multipliers and the Dual Problem
	Finding the Maximal Margin Classifier
	Support Vector Classifier
	Nonlinear Boundaries
	Kernel Algebra
	Advantages and Disadvantages
	SVM Recipe

