
CS 760: Machine Learning Spring 2024

Topic 12: Neural Networks

Instructor: Daniel L. Pimentel-Alarcón © Copyright 2024

DO NOT POLLUTE! AVOID PRINTING, OR PRINT 2-SIDED MULTIPAGE.

12.1 Introduction

Neural networks are one of the main reasons why Machine Learning is making a big splash. Similar to logistic
regression and support vector machines (SVMs), their main purpose is prediction/classification. Classical
applications of neural networks include:

1. Image classification. For example, digit classification (determining the digit contained in an image),
or medical diagnostics (deciding whether a patient is healthy or not based on an MRI).

2. Natural language processing. For example, interpreting voice commands, like Siri and Alexa do.

3. Stock market prediction.

Each of these problems can be rephrased mathematically as finding an unknown (possibly multivariate)
function f⋆, such that given certain data x ∈ RD, f⋆(x) gives the desired classification/prediction y. In our
examples:

1. Image classification. In digit classification x is the vector containing the pixels in the image of a
digit, and y ∈ {0, . . . , 9} is the digit depicted in such image:

In medical diagnostics, x could contain the pixels in an MRI, and y ∈ {0, 1} would be the diagnostic,
0 corresponding to healthy, and 1 to Alzheimers.

Which one has Alzheimer?
Problem: Few Experts

Which one has Alzheimer?
Problem: Few Experts

12-1



Topic 12: Neural Networks 12-2

Natural language processing. Here x is a vector containing the values in a voice signal, and y is
the interpretation, in this case “turn off the t.v.”:

Stock market prediction. Here x could be a sequence of stock market prices at times t = 1, . . . ,T,
and y could be the prediction of such stock market price at time T + 1.

All of these tasks can be tremendously challenging. For example, whether an image contains a 0, or a 1, or
any other digit, depends not only on the values of isolated pixels, but on the way that pixels interact with
one an other in complex manners. Consequently, f⋆ could be quite complex.

Neural networks arise as an alternative to approximate complex functions like these. The main idea behind
neural networks is to use a sequence of simpler functions that interact with one another in a networked way,
so that combined, they approximate f⋆ with arbitrary precision.

12.2 The Building Blocks of Neural Networks

The perceptron was the first building block used in neural networks, inspired by the behavior of neurons in
the brain. This function would have the form

gp(x) = σp(θ
Tx− b) (12.1)



Topic 12: Neural Networks 12-3

where θ ∈ RD and b ∈ R were the parameters of the perceptron, and the perceptron’s activation function
σp is given by

σp(z) =

{
1 if z > 0,
0 otherwise.

If you recall from SVMs, this is essentially the function that defines a hyperplane. The main intuition here
is that a perceptron would fire up, like a neuron, if it receives the right input.

Unfortunately, such a discontinuous activation function can be quite unstable, as a tiny change in the input
can produce a massive change in the output, which is a behavior we often don’t want. For example, imagine
this type of function were used to decide whether a self-driving car should stop or move. It sounds a bit
unreasonable that if θTx − b = −0.0001, then the car stops, and if θTx − b = 0.0001, then the car moves.
Often we would like a softer transition, which is one of the main reasons people decided to use the sigmoid
neuron

gs(x) = σs(θ
Tx− b)

which has the same form as (12.1), only instead of σp, it uses the logistic sigmoid activation function

σs(z) :=
1

1 + e−z
,

which looks like this:

Notice that g(x) = σ(θx− b) shifts and squeezes the function σ(x) by b and θ, for example:



Topic 12: Neural Networks 12-4

So by adding and scaling bunch of these functions g, each with appropriate parameters θ and b, we can
create soft step functions, for example:

Hence, by adding and scaling enough of these functions g (either perceptrons gp or sigmoid neurons gs), we
can approximate any function f⋆ to arbitrary precision, kind of like a Riemann-type approximation:

The composition of functions g is often represented through a network, where each function g is depicted by
a node (a.k.a. neuron) like this:

Notice that the activation function σ does not have to be restricted to σp or σs. One can use other activation
functions, such as the linear activation function σl(z) := z, or the so-called rectified linear unit (ReLU)
σr(z) := max(0, z), or the tanh σh(z) := 2σs(2z)− 1, or combinations. For example, a representation of the
soft step function above would look like:



Topic 12: Neural Networks 12-5

where the neurons on the left have sigmoid activation functions, and the neuron on the right has a linear
activation function. More generally, one can add more neurons to obtain more powerful networks, capable
of approximating more complex functions (the downside of larger networks is that they will have more
parameters that will have to be learnt, and one runs the risk of overfitting). In general, we consider networks
like the following:

Here we use L to denote the number of layers (in the figure above L = 6), and nℓ to denote the number
of neurons in the ℓth layer. For ℓ = 2, 3, . . . ,L, Θℓ ∈ Rnℓ×nℓ−1 is the matrix formed by transposing and
stacking the weight vectors of the nℓ neurons in the ℓth layer; bℓ ∈ Rnℓ is the vector containing the shifting
coefficients (often called bias coefficients) of the neurons in the ℓth layer; and σℓ is the activation function of
the ℓth layer. This way the output at the second layer is given by:

g2(x) = σ2(Θ
2x− b2). (12.2)

Similarly, for ℓ = 3, . . . ,L, the output at the ℓth layer is given by:

gℓ(x) = σℓ(Θ
ℓgℓ−1(x)− bℓ), (12.3)

and the final output of the network, gL(x), is also denoted as:

f̂(x) := σL(Θ
L σL−1(Θ

L−1 · · · σ3(Θ
3 σ2(Θ

2x− b2)︸ ︷︷ ︸
g2(x)

−b3)

︸ ︷︷ ︸
g3(x)

...

· · · − bL−1)

︸ ︷︷ ︸
gL−1(x)

−bL)

︸ ︷︷ ︸
gL(x)

, (12.4)

Notice that f̂(x) ∈ RnL may be a vector (if nL > 1), as opposed to a scalar (if nL = 1), and so neural
networks allow to infer vector functions.



Topic 12: Neural Networks 12-6

12.3 Learning f̂

By the arguments above, with the right parameters Θ := {Θℓ,bℓ}Lℓ=2, the function f̂ in (12.4) can approx-

imate any function f⋆ with arbitrary accuracy. The challenge is to find the right parameters {Θℓ,bℓ}Lℓ=2.
The process of finding such parameters is often known as learning. To this end, we use training data, that is,
samples x1,x2, . . . ,xN, as well as their response y1,y2, . . . ,yN. For example, if we were studying diabetes, xi

could contain demographic information about the ith person in our study, and yi could be a binary variable
indicating whether this person is diabetic or not. Since yi = f⋆(xi) for every i = 1, 2, . . . ,N, this means that
we don’t get to see all of f⋆, but we get to see N snapshots of f⋆ at the samples xi:

Our goal is to exploit this information to find the parameters {Θℓ,bℓ}Lℓ=2 such that f̂ ≈ f⋆, such that the
function (network) can reproduce the response y whenever a new vector x is fed to the function (network).
This can be done by minimizing the error over all training data (often called cost function) between the
network’s prediction f̂(xi) and its corresponding observation yi. Mathematically, we can achieve this by
solving the following optimization

min
{Θℓ,bℓ}L

ℓ=2

N∑
i=1

∥yi − f̂(xi)∥2. (12.5)

Notice that the dependency of {Θℓ,bℓ}Lℓ=2 is hidden in f̂ (see (12.4)).

12.4 Backpropagation

The most widely used technique to minimize the cost c in (12.5) is through stochastic gradient descent and
backpropagation. Recall that gradient descent iteratively moves a step of size η in the negative direction of
the gradient:



Topic 12: Neural Networks 12-7

This, of course, requires computing the gradient of each parameter. The key insight to achieve this is that
the gradient of the parameters at the ℓth layer can be computed backwards in terms of the gradients of
the parameters of subsequent layers. To see this, first define z1i = y1

i = xi, and then for ℓ = 2, 3, . . . ,L,

recursively define zℓi := Θℓyℓ−1
i − bℓ, where yℓ

i := gℓ(xi) = σℓ(z
ℓ
i ) denotes the output at the ℓth layer, so

that f̂(xi) = yL
i . Define the cost of the ith sample as ci := yi − f̂(xi), and

δLi := ci ⊙ σ′
L(z

L
i ),

δℓi :=
[
(Θℓ+1)T δℓ+1

i

]
⊙ σ′

ℓ(z
ℓ
i ), 2 ≤ ℓ ≤ L− 1,

where ⊙ represents the Hadamard product, and σ′
ℓ represents the derivative of σℓ. Then with a simple chain

rule we obtain the following gradients:

∇iΘ
ℓ :=

∂∥ci∥2

∂Θℓ
= −2 δℓi (yℓ−1

i )T, ∇ib
ℓ :=

∂∥ci∥2

∂bℓ
= −2 δℓi , 2 ≤ ℓ ≤ L. (12.6)

With these results, one can use gradient descent, or, to reduce computational burden an increase con-
vergence speed, stochastic gradient descent, which at each training time t selects a random subsample
Ωt ⊂ {1, 2, . . . ,N} of the training data (hence the term stochastic), and updates the parameters according
to this subsample:

Θℓ
t = Θℓ

t−1 − η
∑
i∈Ωt

∇iΘ
ℓ
t−1,

bℓ
t = bℓ

t−1 − η
∑
i∈Ωt

∇ib
ℓ
t−1.

These iterations are repeated until convergence to obtain the final parameters {Θ̂
ℓ
, b̂

ℓ
}Lℓ=2.

A Word of Warning

We have mentioned before that using neural networks we can approximate any function f⋆ with arbitrary
accuracy. Put another way, for every f⋆, and every ϵ > 0 there exists a function f̂ with parameters
{Θℓ,bℓ}Lℓ=2 such that,

∥f⋆(x)− f̂(x)∥2 < ϵ for every x in the domain of f⋆. (12.7)

The challenge is to find the parameters {Θℓ,bℓ}Lℓ=2 for which (12.7) is true. We aim to find such parameters
by minimizing the cost function in (12.5). The wrinkle is that such cost may be non-convex, which implies
that we may never find the right parameters {Θℓ,bℓ}Lℓ=2. In other words, for every f⋆ there will always

exist a neural network (parametrized by {Θℓ,bℓ}Lℓ=2) that approximates f⋆ arbitrarily well. However, we
may be unable to find such network.

12.5 Neural Networks Flavors

In practice, a specific network may work be better than another for each problem. Unfortunately, options
(number of layers, number of neurons in each layer, type of layers, connectivity, etc.) are endless, and
deciding on the best choice remains more of an art than science. However, people have empirically identified
certain strategies that tend to work well for certain tasks.

Starting from encoding, there are several creative and popular strategies. For example:



Topic 12: Neural Networks 12-8

• One-hot-encoding. Nominal features are represented with binary vectors with a single 1. For
example, for nucleotides, we could have:

A 7→


1
0
0
0

 , C 7→


0
1
0
0

 , G 7→


0
0
1
0

 , T 7→


0
0
0
1

 .

• Thermometer encoding. Ordinal features are represented with binary vectors that have an increas-
ing number of ones. For example, for size we could have:

small 7→

10
0

 , medium 7→

11
0

 , large 7→

11
1

 .

Often, the performance of a network depends on choosing the right feature encoding. Similarly, performance
heavily depends on the choice of activation functions for each layer. Popular choices for intermediate layers
(that is, all but the first and last, a.k.a. hidden layers) include combinations of the aforementioned linear,
ReLU, sigmoid, tanh activation functions, and variants of these, for example the generalized ReLU with
parameter α:

σg(z) := max(0, z) + αmin(0, z).

In particular, when α = 0 we recover the standard ReLU, and when α is small (e.g., 0.01), we obtain the
so-called Leaky ReLU:

As to the output layer, arguably the most popular choice in classification problems is the softmax function:

σsm(z) =
ez∑
j e

zj

The intuition here is that the softmax function produces a vector with nonnegative entries that add up to
1, and can thus be interpreted as the probability that the given input belongs to each class. Possibilities do
not end with the choice of activation functions. One can also play around with the form of g. For example,
rather than the linear product in (12.2) and (12.3), one can use a convolution:

g2(x) = σ2(Θ
2 ∗ x− b2),

gℓ(x) = σℓ(Θ
ℓ ∗ gℓ−1(x)− bℓ), 3 ≤ ℓ ≤ L,

resulting in the popular convolution layers. In addition, one can also play around with the cost function
that one aims to optimize. For example, instead of minimizing the squared error in (12.5), one could try to
maximize a data likelihood model:

max
{Θℓ,bℓ}L

ℓ=2

P
(
Y,X

∣∣∣{Θℓ,bℓ}Lℓ=2

)
,



Topic 12: Neural Networks 12-9

or even a posterior probability:

max
{Θℓ,bℓ}L

ℓ=2

P
(
{Θℓ,bℓ}Lℓ=2

∣∣∣Y,X
)
,

which (by Bayes rule) is equivalent to maximizing the log-likelihood with a prior regularization term:

max
{Θℓ,bℓ}L

ℓ=2

logP
(
Y,X

∣∣∣{Θℓ,bℓ}Lℓ=2

)
+ logP

(
{Θℓ,bℓ}Lℓ=2

)
,

resulting in a bayesian framework. Similarly, one can play around with the cost function, adding regulariza-
tion terms in the interest of favoring certain solutions, or achieving certain goals, like minimizing overfitting.
For example, in addition to the squared error in (12.5), one could add a regularization term that favors
sparse solutions:

N∑
i=1

∥yi − f̂(xi)∥2 + λ

L∑
ℓ=2

∥Θℓ∥1.

where λ is a regularization parameter. Other alternatives to minimize overfitting include:

• Early Stopping. The main idea is to stop training as soon as the error on the validation data stops
decreasing.

• Dropout. The main idea is to pretend at each update step, that a fraction of neurons don’t exist
(typically 20% of the input layer, and 50% of the intermediate layers). This is typically done by
creating a random binary mask whose entries correspond to the input and intermediate neurons, then
multiplying each neuron by its corresponding mask entry, and then proceed to do the update as usual.

Data Augmentation. The main idea is to generate additional samples to be used for training, by
performing transformations on the original ones. For example, in image processing, typical approaches
rotate, flip, translate, scale, crop, and add noise to the original samples:


	Introduction
	The Building Blocks of Neural Networks
	Learning [ffhDef]bold0mu mumu [
	Backpropagation
	Neural Networks Flavors

