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13.1 Introduction

Recall that classification can be summarized as assigning a label (class) y ∈ {1, 2, . . . ,C} =: [C] to a data
point x ∈ RD based on a collection of training data points x1,x2, . . . ,xN ∈ RD whose corresponding classes
y1, y2, . . . , yN ∈ [C] are already known. To this end we can use nearest neighbors and other supervised
learning algorithms.

However, in data science the labels {yi}Ni=1 of the training data points {xi}Ni=1 are often unavailable:

• Given a collection of vectorized images {xi}Ni=1, we want to determine which correspond to the same
individuals (but we don’t know their names).

• Given a collection of vectors {xi}Ni=1 containing information about people’s movies ratings (e.g., Netflix
or Amazon), we want to determine which people have similar preferences.

• Given a collection of vectors {xi}Ni=1 containing genomic sequences from different organisms in a human
gut microbiome sample, determine which sequences correspond to the same species.

Unsupervised learning refers to the tasks when labels {yi}Ni=1 are unavailable. Clustering is one of such tasks.

13.2 Clustering

The task of clustering can be summarized as splitting a collection of data points into groups such that the
points in each group are similar. More precisely, given a collection of data points x1,x2, . . . ,xN ∈ RD, we
want to identify a partition {C1, C2, . . . , CK} of [N] (called clusters) such that if i, j ∈ Ck, then xi and xj are
close to each other (recall that there are several ways to define how close two points are, e.g., ∥xi − xj∥2,
∥xi − xj∥1, or ⟨xi,xj⟩).

Recall that norms satisfy the so-called triangle inequality: ∥x∥ + ∥y∥ ≥ ∥x + y∥, which implies that if x
is close to y, and y is close to z, then x is also close to z. Using this insight, we can rephrase/adapt our
clustering goal in terms of centers as follows: given a collection of data points x1,x2, . . . ,xN ∈ RD, we want
to identify centers µ1,µ2, . . . ,µK ∈ RD that minimize the within-cluster distances:

K∑
k=1

∑
i∈Ck

∥µk − xi∥,
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Figure 13.1: Initial and final step of Lloyd’s algorithm.

where i ∈ Ck if ∥µk−xi∥ ≤ ∥µℓ−x∥ for every ℓ ∈ [K]. Notice that this is a kind of chicken and egg problem:
you need to know the clusters {Ck} to find the centers {µk}, and you need to know the centers in order to
determine the clusters. This observation is the main insight behind Lloyd’s algorithm.

13.3 Lloyd’s Algorithm

Lloyd’s algorithm, aka the K-means clustering algorithm, is perhaps the simplest unsupervised clustering
method, which uses an alternating strategy that is very common in machine learning. The main idea is to
(i) pretend that we know the centers and determine the clusters, (ii) pretend that we know the clusters and
compute the centers, and then alternate between steps (i) and (ii) until convergence. More precisely, we
start with some initial estimates µ̂1, µ̂2, . . . , µ̂K ∈ RD, and then

(i) Assign each datapoint to its closest center to produce a clustering:

Ĉk =
{
i ∈ [N] : ∥µ̂k − xi∥ ≤ ∥µ̂ℓ − x∥ ∀ ℓ ∈ [K]

}
.

(ii) Compute the center of each cluster:

µ̂k =
1

|Ĉk|

∑
i∈Ĉk

xi.

Finally, we alternate between steps (i) and (ii) until convergence. See Figure 13.1 to build some intuition.

13.4 Initialization

As with most alternating algorithms, Lloyd’s algorithm depends heavily on initialization, that is, the choice
of initial centers {µ̂k}Kk=1. There are several popular options:

• Random samples. This option simply selects K data points randomly, that is, µ̂k = xi for some
randomly chosen i. This tends to spread out initial centers.

• Random partition. This option first partitions data randomly into K clusters, and then computes
the initial centers as the mean of each cluster. This tends to place all initial centers close to the center
of the entire dataset.
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• K-means++. This option aims to spread initial centers according to the data distribution. To this
end, K-means++ selects one random data point xi as the first center µ̂1, and then for every 2 ≤ k ≤ K,
it chooses the kth center from the remaining data with probability proportional to its closest existing
center. That is, if xj is none of the first k−1 centers, then xj is chosen as the kth center with probability
proportional to

min
ℓ∈[k−1]

∥µ̂ℓ − xj∥2.

With this initialization, Lloyd’s algorithm is guaranteed to find a solution that is close (within a logK
factor) to the optimal solution. This is remarkable, because the K-means problem is non-convex,
NP-hard, so it is not evident that any algorithm should work.
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