CS 760: Machine Learning Spring 2024
Topic 4: Review of Optimization 101

INSTRUCTOR: DANIEL L. PIMENTEL-ALARCON (© COPYRIGHT 2024

DO NOT POLLUTE! AVOID PRINTING, OR PRINT 2-SIDED MULTIPAGE.

4.1 Introduction

Most machine learning problems can be posed as finding the mazimizer of a function g(6), that is, the value
6* such that g(6*) > g(6) for every € in the domain of g:

maximum —> g(6%)

maximizer —— g*

Example 4.1. Suppose 6 denotes the moment of your life when you stop studying, and start working,
e.g., after high school, after college, after a masters, after a Ph.D, after a postdoc, or somewhere in
between. Let g be the amount of money that you will earn throughout your life as a function of 6. The
more you study, the higher pay you’ll earn when you start working; on the other hand, the sooner you
start working, the more experience you’ll gain, the sooner you can get a promotion and a raise. You
want to find the sweet spot (maximizer) 6* that produces the maximum pay g(6*).

4.2 Optimizing Simple Concave Functions

If g is concave and simple enough, 8* can be determined using our elemental calculus recipe:

1. Take derivative of g(6)

2. Set derivative to zero, and solve for the maximizer.
Example 4.2. Consider g() = 3 — (0 + 5)%. We can follow our recipe to find its maximizer:

1. The derivative of g is given by Vg(0) = —2(0 + 5).

Topic 4: Review of Optimization 101 4-2

2. Setting the derivative to zero and solving for € we obtain:

—2(0+5) =0
6 = —b5.
Since g is concave (can you show this?), we conclude that its maximizer is 6* = —5, as depicted below:

4.3 Matrix Derivatives

In general, g will not always be a function as simple as in Example 4.2. In fact, in most machine learning
problems, g will be a complex multivariate function in matrix form, for example:

9(0) = (y—X0)"(y — X0),

where y and 0 are vectors, and X is a matrix. If we want to optimize ¢g(8), we need to take the derivative
with respect to a vector, or more generally, with respect to a matrix.

To learn more about how to take derivatives w.r.t. vectors and matrices I recommend taking a look at Old
and new matriz algebra useful for statistics by Thomas P. Minka, which shows how to take derivatives of
some matrix functions, such as:

g(0) = 0TA
g(0) = 0TA8

g'(8) = 2A6.

by
Q\
=

4.4 Gradient Ascent

Some functions, however, are too complex to solve for 6 in step 2. For example, consider the following
function that describes the likelihood of a Bernoulli(d) random variable:

N
1 1
6) = idog [————)+ (1 —y)log (1 — ——+—).
9(0) §y0g<1+69Txi> (Y)0g< 1+69Txi)

i=1

Its gradient is given by:

Topic 4: Review of Optimization 101 4-3

If we set this to zero, can you solve for 87

For cases where our calculus 101 recipe does not work, we use optimization, which is the field of mathematics
that deals with finding maximums (and minimums). In particular, we will use one of the most elemental
tools of optimization: gradient ascent (resp. descent).

The setting is is this: you have a function g(#). You want to find its maximum. You cannot solve for it
directly using the derivative trick, so what can you do? You can test the value of g for different values of 6.
For example, you can test ¢g(0), then maybe g(1), then maybe g(—1), then maybe ¢g(1.5), and so on, until
you find the maximizer. Of course, depending on the domain of g, there could be infinitely many options,
so testing them all would be infeasible.

As the name suggests, the main idea of gradient ascent is to test some initial value 6, (for example 0), and
iteratively use the gradient (another name for derivative) to determine which value of 6 to test next, such
that the each new value 61 produces a higher value for g, until we find the maximum. The main intuition is
that the gradient Vg(#) tells us the slope of g at 6. If this slope is positive, then we know that g is increasing,
and we should try a larger value of 0, say 6y1 = 6y + 7, where 7 is often referred to as step-size. If the slope
is negative, then we know that g is decreasing, and we should try a smaller value of 6, say ;11 = 0, — 7 (see
Figure 4.1 to build some intuition).

V(o)

—

: e
b " 6 6 T o " 6

Figure 4.1: Start at some point 6p. If the gradient is positive (left figure), try a larger value of 0, say 61 = 09 +n. If the gradient
is negative (right figure), try a smaller value of 6, say 61 = 6y + 1. Repeat this until convergence.

The same insight extends to multivariable functions. If g is a function of a vector @ € RP, then Vg(0) € RP
gives the slope of g in each of the D coordinates of 8. Based on this insight, gradient ascent can be summarized
as follows:

Algorithm 1: Gradient Ascent

Input: Function g, step-size parameter n > 0.
Initialize 6,. For example, 8y = 0.

Repeat until convergence: 0,1 = 0;+1nVg(6;).
Output: 6 = 0,.

4.4.1 Step-size 7

The keen reader will be wondering, what if we move too far? In our example of Figure 4.1, we could run
into an infinite loop, where

1 = 03 = 05 = 07 =
92:94:06:08:"',

Topic 4: Review of Optimization 101 4-4

without ever achieving 6*, as depicted below:

Vg(61)

‘V!](az)

How would you solve this?

4.4.2 Initialization

The keen reader will also be wondering: what if we start at the wrong place, as depicted below:

P

0 6 " 6 " 4,

In cases like these we could run into a so-called local maximum, that is, a point that is larger than all other
points in its vicinity, but not necessarily the maximum over the whole domain of g. In the figure above, 65
is a local maximizer.

How would you solve this?

4.4.3 Minimization

How would things change if you wanted to minimize, rather than maximize?

	Introduction
	Optimizing Simple Concave Functions
	Matrix Derivatives
	Gradient Ascent
	Step-size
	Initialization
	Minimization

