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7.1 Introduction

Common practice in Machine Learning involves splitting all available data in two sets, one for training and
one for testing. As the name suggests, training data is used to learn the function f̂ that best estimates the
desired function f⋆, and testing data is used to evaluate the performance of our function f̂ on unseen data,
i.e., how well it generalizes, and whether it overfits:

We say that f̂ overfits the training data if there is an alternative function f that has lower error than f̂ on
all the available data (training and testing), but higher error than f̂ on the training data alone.

Intuitively, overfitting means you do too well on the training data, but poorly on the entire dataset, suggesting
that f̂ is only memorizing answers, rather than learning how to perform a task. This often happens when f̂
has far too many parameters. For example, in the next figures, the function f⋆ that we are trying to learn
is the sinusoidal function in magenta; the slightly noisy data that we observe are the blue circles; in black
are four polynomial approximations f̂ with different degrees (parameters):

Degree = 0 Degree = 1 Degree = 5 Degree = 19

The degrees of freedom (parameters) of f̂ clearly play a crucial role in overfitting. However, depending on
the way we split samples into test and training, a method may also appear to be overfitting (or not) by mere
chance. Cross-validation is a procedure to minimize this chance, and give some reliability to our conclusions
of how a method will generalize to new data.

To build some intuition, suppose we want to use a machine learning algorithm (e.g., logistic regression,
decision tree, neural network, etc.) to diagnose Alzheimers. To this end we will use a dataset containing of
90 images, evenly split among two classes: Healthy and Alzheimers. Following a standard approach, we use
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30 images for training and 60 images for testing, randomly split between the two classes. After training, the
algorithm will produce a classifier function f̂ that essentially separates these two classes:

Then we can use our 30 testing images to assess our function’s accuracy. However, depending on the
training/testing split, we might get different classifier functions f̂ , and in turn, different results in the testing
set. For example, here are three classifiers produced by training sets (circles) with just one different sample;
notice the different classifications we would get for the same testing samples (stars):

Hence, by mere chance in how we split the training and testing, we could conclude that our classifier
generalizes very well (or very badly) to new data. In some cases we can analytically estimate the error that

f̂ will have on new data. For example, in linear regression, it can be shown that under mild assumptions, the
expected mean squared error on new data will be about N+D+1

N−D−1 times the error on training data, where N
denotes the number of samples and D denotes the number of features [1]. However, for other methods (like
neural networks) this analysis can be quite daunting. In cases like these, cross-validation offers a generally
applicable approach to estimating the performance of a method on new data, by running several trials with
different testing/training splits.

7.2 K-Fold Cross-Validation

The main idea of K-fold cross-validation is to split all data into K subsets, treat each one as testing, and
average the results. More precisely, first we split each class into K even subsets, so that classes are balanced
within each fold. Then each fold is formed by merging one different batch of each class. Typical values for
K are 5 and 10. In our Alzheimers example, our K = 5 folds would look as follows:
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Then we train the classifier using all but one part of the data, and predict the classification of the left-out
set:

Testing Training

Prediction

Repeat the same for each k = 1, . . . ,K:

1 2 · · · 5
Testing Training

Prediction

Testing TrainingTraining

Prediction

· · ·

TestingTraining

Prediction

In the end we will have one prediction for each sample:
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Predictions

Data

At this point we can compute accuracy as the fraction of correctly classified samples. In this example we
have 11 misclassified points (79 correctly classified) out of 90, producing an accuracy of 88%.

7.3 Leave One Out Cross-Validation

This is the same as K-fold cross-validation with K equal to the number of samples. In our figure above, we
would predict the classification of the each image using the remaining 89 as training.

7.4 Holdout Method

Remember at the beginning we said we could randomly select 60 images for training and 30 for testing
(keeping classes evenly distributed in each set)? Well, this method is called holdout. As mentioned before,
you may get an unreliable result, and is suboptimal in the sense that you are not exploiting all your data
(because you are keeping some for testing).

7.5 Bias and Variance

In general, we want the performance of our classifier to have low bias and low variance across trials (folds):
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7.6 Imbalanced Data

So far we have been assuming data is balanced across classes. That is, each class has about the same number
of samples. If this is not the case, some classifiers can become lazy, and simply classify everything as the
larger class. For example, imagine that out of your 90 samples, only 1 have Alzheimers. Then a classifier
can simply assign everything as healthy, and still have 98.9% accuracy.

Hence it is often useful to measure the accuracy of each class. In the example above, we can compute how
often we can correctly detect Alzheimers, and how often we can detect a healthy case:
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There are several other ways to deal with imbalanced data, for example resampling with replacement the
smallest group to generate similar sample sizes, or penalizing errors in the smallest group (for example, in
the cost function of a neural network).

Remark 7.1. Notice that if classes are evenly distributed, a random classifier will generally obtain an
accuracy of 1/C, where C is the number of classes. If the accuracy of a method is below this, then something
is probably wrong. Typical reasons are outliers or biased datasets.

7.7 Peeking Bias

Peeking bias refers to the bias induced when the test and training sets are not independent. For example,
this will happen if:
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• The MRI of certain subject is included in the training data, and another MRI of the same subject is
included in the testing data.

• As part of your training you normalize (subtract mean and divide by standard deviation) across all
data, including testing data.

To avoid this one must verify that training is done without any involvement of the testing data:

• Keep all observations contributed from the same subject together (either all on the training set or all
on the testing set).

• Estimate normalization parameters from training data alone.

• Estimate model parameters from training data alone.

• Estimate tuning parameters from training data alone.

One way to verify whether you have peeking bias is to randomly reassign labels and repeat the entire
procedure. If the accuracy is significantly different from a random classifier, chances are you have a peeking
bias.
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