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1.1 Vector Spaces

In words, a vector space is a set of elements (usually called vectors) such that linear combinations of its
elements are also in the set.

Example 1.1. The vector space that we will mostly use is RD. Here are two vectors in R3:

x =

 1
−2
π

 , y =

e0
1

 .
We can see that for any real scalars a,b, the linear combination

ax + by =

a + be
−2a

aπ + b


is also an element of R3 (see Figure 1.1 to build some geometric intuition).

Why do I care about vector spaces?

If you are wondering this, you are asking yourself the right question! The reason is simple: in machine
learning we have to deal with data, and it is useful to arrange it in vectors.

Figure 1.1: Vectors x,y ∈ R3 from Example 1.1, and vector ax+ by ∈ R3, with a = b = 1.

1-1



Topic 1: Review of Linear Algebra 1-2

Example 1.2 (Electronic health records). Hospitals keep health records of their patients, containing
information such as weight, amount of exercise they do, and glucose level. The information of the ith

patient can be arranged as a vector

xi =

 weight
exercise
glucose

 ∈ R3.

In this sort of problem we want to identify causes for diseases. This can be done by analyzing the
patterns in the vectors of different patients. For example, if our data x1, . . . ,xN looks like:

then it is reasonable to conclude that overweight and lack of exercise are highly correlated with diabetes.

Of course, this is an oversimplified example. Not all correlations are as evident. Health records actually
include much more comprehensive information, such as age, gender, ethnicity, cholesterol levels, etc.
This would produce data vectors xi in higher dimensions:

xi =



weight
exercise

glucoseage
gender

ethnicity
cholesterol

...


∈ RD.

Now you will have to use your imagination to decide how D-dimensional space looks like. In fact, it
can be very challenging to visualize points in RD (with D > 3, obviously). Luckily, using theory from
vector spaces (and probability and statistics) we can find lines, planes, curves, etc. (similar to the gray
curves depicted in the figure above, only in higher dimensions) that explain out data (just as the gray
curves explain the correlations between weight, exercise and glucose).

Example 1.3 (Recommender systems). Similarly, Amazon, Netflix, Pandora, Spotify, Pinterest, Yelp,
Apple, etc., keep information of their users, such as age, gender, income level, and very importantly,
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ratings of their products. The information of the ith user can be arranged as a vector

xi =



age
gender
income

rating of item 1
rating of item 2

...
rating of item D− 3


∈ RD.

In this sort of problem we want to analyze these data vectors to predict which users will like which
items, in order to make good recommendations. If Amazon recommends you an item you will like, you
are more likely to buy it. You can see why all these companies have a great interest in this problem,
and they are paying a lot of money to people who work on this.

This can be done by finding structures (e.g., lines or curves) in high-dimensions that explain the data.
As in Example 1.2, where we discovered that weight and exercise are good predictors for diabetes, here
we want to discover which variables (e.g., gender, age, income, etc.) can predict which items (e.g.,
movies, shoes, songs, etc.) you would like.

Example 1.4 (Genomics). The genome of each individual can be stored as a vector containing its
corresponding sequence of nucleotides, e.g., Adenine, Thymine, Guanine, Cytosine, Thymine, . . .

In this sort of problem we want to analyze these data vectors to determine which genes are correlated
to which diseases (or features, like height or weight).

Example 1.5 (Image processing). A m× n grayscale image can be stored in a data matrix X ∈ Rm×n

whose (i, j)th entry contains the gray intensity of pixel (i, j). Furthermore, X can be vectorized, i.e., we
can stack its columns to form a vector x ∈ RD, with D = mn.
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We want to analyze these vectors to interpret the image. For example, identify the objects that appear
in the image, classifying faces, etc.

Example 1.6 (Computer vision). The images X1, . . . ,XN ∈ Rm×n that form a video can be vectorized
to obtain vectors x1, . . . ,xN ∈ RD.

Similar to image processing, we want to analyze these vectors to interpret the video. For example, be
able to distinguish background from foreground, track objects, etc. This has applications in surveillance,
defense, robotics, etc.

Example 1.7 (Neural activity). Functional magnetic resonance imaging (fMRI) generates a series
of MRI images over time. Because oxygenated and deoxygenated hemoglobin have slightly different
magnetic characteristics, variations in the MRI intensity indicate areas of the brain with increased
blood flow and hence neural activity. The central task in fMRI is to reliably detect neural activity at
different spatial locations (pixels) in the brain. The measurements over time at the (i, j)th pixel can be
stored in a data vector xij ∈ RD.
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...

...

The idea is to analyze these vectors to determine the active pixels.

Example 1.8 (Sun flares). The Sun, like all active stars, is constantly producing huge electromagnetic
flares. Every now and then, these flares hit the Earth. Last time this happened was in 1859, and all that
happened was that you could see the northern lights all the way down to Mexico — not a bad secondary
effect! However, back in 1859 we didn’t have a massive power grid, satellites, wireless communications,
GPS, airplanes, space stations, etc. If a flare hit the Earth now, all these systems would be crippled,
and repairing them could take years and would cost trillions of dollars to the U.S. alone! To make
things worse, it turns out that these flares are not rare at all! It is estimated that the chance that a
flare hits the earth in the next decade is about 12%.

Of course, we cannot stop these flares any more than we can stop an earthquake. If it hits us, it hits us.
However, like with an earthquake, we can act ahead. If we know that one flare is coming, we can turn
everything off, let it pass, and then turn everything back on, like nothing happened. Hence the NASA
and other institutions are investing a great deal of time, effort and money to develop techniques that
enable us to predict that a flare is coming.

So essentially, we want to device a sort of flares radar or detector. This radar would receive, for example,
an image X of the sun (or equivalently, a vectorized image x ∈ RD), and would have to decide whether
a flare is coming or not.
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These are only a few examples that I hope help convince you that vector spaces are the backbone of machine
learning. Studying vector spaces will allow us to use the powerful machinery of vector spaces that has been
developed over centuries (e.g., principal component analysis) in order to tackle the modern problems in
machine learning.

Formal definition

Definition 1.1 (Vector space). A set X is a vector space if it satisfies the following additive properties:

(a1) Closure: For every x,y ∈ X, x + y ∈ X.

(a2) Commutative law: For every x,y ∈ X, x + y = y + x.

(a3) Associative law: For every x,y, z ∈ X, (x + y) + z = x + (y + z).

(a4) Additive identity: There exists an element in X, denoted by 0, such that for all x ∈ X, x + 0 = x.

(a5) Additive inverse: For every x ∈ X, there exists a unique element in X, denoted by −x, such that
x + (−x) = 0.

and the following multiplicative properties:

(m1) Closure: For each a ∈ R and x ∈ X, ax ∈ X.

(m2) Associative law: For every a,b ∈ R and any x ∈ X, a(bx) = (ab)x.

(m3) First distributive law: For any a ∈ R and any x,y ∈ X, a(x + y) = ax + ay.

(m4) Second distributive law: For any a,b ∈ R and any x ∈ X, (a + b)x = ax + bx.

(m5) Multiplicative identity: For every x ∈ X, 1x = x.

Example 1.9. RD is a vector space.

How would we show that RD is a vector space? We would have to show that RD satisfies all the properties
of a vector space. For example, let us show property (a1).

Proof. Let x,y ∈ RD. Since x + y ∈ RD, RD satisfies property (a1), as desired.

In the proof we are taking an arbitrary x and y in RD, and we show that x + y is also in RD. For example,
with the vectors x,y ∈ R3 in Example 1.1, we can see that

x + y =

1 + e
−2
π + 1

 ∈ R3.
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Definition 1.2 (Linear combination, coefficients). A vector y is a linear combination of {x1, . . . ,xR} if it
can be written as

y =

R∑
r=1

crxr (1.1)

for some c1, . . . , cR ∈ R. The scalars {c1, . . . , cR} are called the coefficients of y with respect to (w.r.t.)
{x1, . . . ,xR}.

Example 1.10. If X = RD, we can write (1.1) in matrix form as y = Xc, where X = [x1 · · · xR] ∈
RD×R and c = [c1 · · · cR]T ∈ RR.

Definition 1.3 (Linear independence). A set of vectors {x1, . . . ,xR} is linearly independent if

R∑
r=1

crxr = 0

implies cr = 0 for every r = 1, . . . ,R. Otherwise we say it is linearly dependent.

1.2 Subspaces

Subspaces are essentially high-dimensional lines. A 1-dimensional subspace is a line, a 2-dimensional sub-
spaces is a plane, and so on. Subspaces are useful because data often lies near subspaces.

Example 1.11. The health records data in Example 1.2 lies near a 1-dimensional subspace (line):
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Figure 1.2: Subspace U (plane) spanned by two vectors, u1 and u2.

In higher dimensions subspaces may be harder to visualize, so you will have to use imagination to decide
how a higher-dimensional subspace looks. Luckily, we have a precise and formal mathematical way to define
them:

Definition 1.4 (Subspace). A subset U ⊆ X is a subspace if for every a,b ∈ R and every u,v ∈ U,
au + bv ∈ U.

Definition 1.5 (Span). span[u1, . . . ,uR] is the set of all linear combinations of {u1, . . . ,uR}. More formally,

span[u1, . . . ,uR] :=

{
x ∈ X : x =

R∑
r=1

crur for some c1, . . . , cR ∈ R

}
.

Example 1.12. Let u1, . . . ,uR ∈ RD. Then span[u1, . . . ,uR] is a subspace.

Definition 1.6 (Basis). A set of linearly independent vectors {u1, . . . ,uR} is a basis of a subspace U if each
v ∈ U can be written as

v =

R∑
r=1

crur

for a unique set of coefficients {c1, . . . , cR}.

1.3 Inner Products

To analyze vectors we often need to study the relationship between two or more vectors. One useful way
to measure these relationships is through their angle. Luckily, even when vectors in high dimensions can be
hard to visualize, inner products allow us to study their relationships. In words, the inner product 〈x,y〉 is
a proxy for the angle between x and y vectors (see equation (1.2) below). More formally:

Definition 1.7 (Inner product). A mapping 〈·, ·〉 : X×X→ R is an inner product in X if it satisfies:
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(i) For every x ∈ X, 0 ≤ 〈x,x〉 <∞, with 〈x,x〉 = 0 if and only if x = 0.

(ii) For every x,y ∈ X, 〈x,y〉 = 〈y,x〉.

(iii) For every x,y, z ∈ X, and every a,b ∈ R, 〈ax + by, z〉 = a〈x, z〉+ b〈y, z〉.

Example 1.13. Let x,y ∈ X = RD. Then 〈x,y〉 := xTy =

D∑
d=1

xdyd defines an inner product.

Definition 1.8 (Orthogonal). A collection of vectors {x1, . . . ,xR} is orthogonal if 〈xr,xk〉 = 0 for every
r 6= k.

1.4 Norms

The norm ‖x‖ of a vector x is essentially its size. Norms are also useful because they allow us to measure
distance between vectors (through their difference).

Example 1.14. Consider the following images:

and vectorize them as in Example 1.5 to produce vectors x,y, z. We want to do face clustering, i.e.,
we want to know which images correspond to the same person. If ‖x − y‖ is small (i.e., x is similar
to y), it is reasonable to conclude that the first two images correspond to the same person. If ‖x− z‖
is large (i.e., x is very different from z), it is reasonable to conclude that the first and second images
corresponds to different persons.

Definition 1.9 (Norm). A mapping ‖ · ‖ : X→ R is a norm in X if it satisfies:

(i) For every x ∈ X, 0 ≤ ‖x‖ <∞, with ‖x‖ = 0 if and only if x = 0.
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(ii) For every x ∈ X and every a ∈ R, ‖ax‖ = |a|‖x‖.

(iii) For every x,y ∈ X, ‖x + y‖ ≤ ‖x‖+ ‖y‖. This is known as the triangle inequality.

These properties of norms (in particular property (iii)) allow you to draw intuitive conclusions. For instance,
in Example 1.14, knowing that ‖x−y‖ is small and that ‖x− z‖ is large allows us to conclude that ‖y− z‖
is also large. Intuitively, this allows us to conclude that if x,y correspond to the same person, and x and z
corresponds to different persons, then y and z also correspond to different persons. In other words, nothing
weird will happen.

Also, using inner products and norms we can compute angle θ between x and y as:

cos θ =
〈x,y〉
‖x‖‖y‖

(1.2)

Example 1.15. Let x ∈ X = RR. Then ‖x‖ := 〈x,x〉1/2 is a norm.

Example 1.16. A norm satisfies the inequality |‖x‖ − ‖y‖| ≤ ‖x− y‖.

If ‖x‖ = 1, we say x is a unit vector, or that it is normalized. Similarly, a collection of normalized, orthogonal
vectors is called orthonormal. As you can see, there is a tight relation between inner products and norms.
The following is one of the most important and useful inequalities that describe this relationship.

Proposition 1.1 (Cauchy-Schwartz inequality). For every x,y ∈ X,

|〈x,y〉| ≤ ‖x‖‖y‖.

Furthermore, if y 6= 0, then equality holds if and only if x = ay for some a ∈ R.

1.5 Projections

In words, the projection x̂ of a vector x onto a subspace U is the vector in U that is closest to x. More
formally,

Definition 1.10 (Projection). The projection of x ∈ X onto subspace U is the vector x̂ ∈ U satisfying

‖x− x̂‖ ≤ ‖x− u‖ for every u ∈ U.

Notice that if x ∈ U, then x̂ = x. The following proposition tells us exactly how to compute projections.
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Figure 1.3: Projection x̂ of vector x onto subspace U.

Proposition 1.2. Let {u1, . . . ,uR} be an orthonormal basis of U. The projection of x ∈ X onto U is
given by

x̂ =

R∑
r=1

〈x,ur〉ur.

In other words, the coefficient of x w.r.t. ur is given by 〈x,ur〉.

Furthermore, the following proposition tells us that we can compute projections very efficiently: just using
a simple matrix multiplication! This makes projections very attractive in practice. For example, as we saw
before, data often lies near subspaces. We can measure how close using the norm of the residual x− x̂.

Proposition 1.3 (Projector operator). Let U ∈ RD×R be a basis of U. The projection operator
PU : X→ U that maps any vector x ∈ X to its projection x̂ ∈ U is given by:

PU = U(UTU)−1UT.

Notice that if U is orthonormal, then PU = UUT.

Proof. Since x̂ ∈ U, that means we can write x̂ as Uc for some c ∈ RR. We thus want to find the c that
minimizes:

‖x−Uc‖22 = (x−Uc)T(x−Uc) = xT − 2cTUTx + cTUTUc.

Since this is convex in c, we can use elemental optimization to find the desired minimizer, i.e., we will take
derivative w.r.t. c, set to zero and solve for c. To learn more about how to take derivatives w.r.t. vectors and
matrices see Old and new matrix algebra useful for statistics by Thomas P. Minka. The derivative w.r.t. c is
given by:

−2UTx + 2UTUc.

Setting to zero and solving for c we obtain:

ĉ := arg min
c∈RR

‖x−Uc‖22 = (UTU)−1UTx,
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where we know UTU is invertible because U is a basis by assumption, so its columns are linearly independent.
It follows that

x̂ = Uĉ = U(UTU)−1UT︸ ︷︷ ︸
PU

x,

as claimed. If U is orthonormal, then UTU = I, and hence PU simplifies to UUT. Notice that ĉ are the
coefficients of x̂ w.r.t. the basis U.

1.6 Gram-Schmidt Orthogonalization

Orthonormal bases have very nice and useful properties. For example, in Proposition 1.3, if the basis U is
orthonormal, then the projection operator is simplified into UUT, which requires much less computations
than U(UTU)−1UT. The following procedure tells us exactly how to transform an arbitrary basis into an
orthonormal basis.

Proposition 1.4 (Gram-Schmidt procedure). Let {u1, . . . ,uR} be a basis of U. Let

v′r =

{
u1 r = 1,

ur −
∑r−1

k=1〈ur,vk〉vk r = 2, . . . ,R,

vr = v′r/‖v′r‖.

Then {v1, . . . ,vR} are an orthonormal basis of U.

Proof. We know from Proposition 1.2 that
∑r−1

k=1〈ur,vk〉vk is the projection of ur onto span[v1, . . . ,vr−1].
This implies v′r is the orthogonal residual of ur onto span[v1, . . . ,vr−1], and hence it is orthogonal to
{v1, . . . ,vr−1}, as desired. vr is simply the normalized version of v′r.

1.7 Singular Value Decomposition (SVD)

We often store a collection of vectors x1, . . . ,xN ∈ RD as columns in an D×N matrix X. These vectors may be
skewed towards certain directions, often known as principal components. The singular value decomposition
produces a basis of RD containing such directions.

Proposition 1.5 (Singular value decomposition). Let X ∈ RD×N. Then there exist matrices with
orthonormal columns U ∈ RD×D and V ∈ RN×N and a matrix Σ ∈ RD×N of the form:

Σ =

 σ1
. . . 0

σD

 or Σ =


σ1

. . .

σN
0

 ,
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Figure 1.4: Principal components, u1 and u2 of a dataset.

depending on whether D ≤ N or D > N, such that

X = UΣVT.

The first R columns in U, often called the left-singular vectors, span the R-dimensional subspace that
captures most of the variance in {x1, . . . ,xN}. σr captures the variance in the rth direction, and the ith

column of ΣVT gives the coefficients of xi w.r.t. the basis in U.


	Vector Spaces
	Subspaces
	Inner Products
	Norms
	Projections
	Gram-Schmidt Orthogonalization
	Singular Value Decomposition (SVD)

