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4.1 Introduction

In many applications we observe data x drawn according to a distribution p with an unknown parameter θ?,
and we want to learn or estimate such parameter. We write this as

x ∼ p(x|θ?), θ? ∈ Θ.

In other words, we want to find the parameter θ? that generated our data x.

Example 4.1 (Psichokinesis). Imagine controlling things with your mind. For example, skipping a
song by just thinking about it. One way to do this is by putting D sensors in your head (in your
headphones, for example). These sensors would record small voltages generated by your brain, store
them in a vector x ∈ RD, and send them to a machine (phone, computer, server, etc.). The machine
should interpret x and skip the song if that is what you thought about (see Figure 4.1).

We can expect that whenever you think of skipping a song, x will be composed of an skip signal µ?II ∈ RD

plus other stuff, i.e.,

x = µ?II + η,

where η ∼ N (0, σ2I) represents noise. If we knew µ?II, we could setup a hypothesis test, similar to
Example 3.6:

H0 : x ∼ N (0, σ2I) ⇒ do nothing,

H1 : x ∼ N (µ?II, σ
2I) ⇒ skip song.

However, we do not know µ?II, and hence we want to learn it, or more precisely, estimate it. To this end,
we can put the sensors in your head, ask you to think of skipping a song, and record the response vector
x. We can repeat this experiment N times to obtain i.i.d. samples {xi}Ni=1 according to N (µ?II, σ

2I).
We don’t know µ?II, but we know that {xi}Ni=1 were generated according to N (µ?II, σ

2I), so the idea is
to find the µ?II that most likely generated {xi}Ni=1.

In this example, p(x|θ?) is the gaussian probability density function with parameters θ? = {µ?II, σ2},
and we want to estimate µ?II.

4-1



Topic 4: Parameter Estimation 4-2

...

Figure 4.1: Sensors record small voltages generated by your brain and store them in a signal vector x ∈ RD. A machine (phone,
computer, server, etc.) should interpret x and skip the song if that is what you thought about. See Example 4.1.

Remark 4.1 (Notation). In general, we will use ? to denote the true parameter that we want to

estimate (e.g., θ?), and ˆ to denote an estimator (e.g., θ̂).

4.2 Maximum Likelihood

Again, suppose we are given data x ∼ p(x|θ?), and we want to estimate θ?. One way to do this is by finding
the parameter θ ∈ Θ that most likely generated our data x.

Definition 4.1 (Maximum likelihood estimator (MLE)).

θ̂ML := arg max
θ∈Θ

p(x|θ).

Remark 4.2 (Likelihood). The term likelihood is often a source of confusion. Recall that in an estima-
tion problem we are given an instance of a random variable, i.e., we observe data x = x drawn according
to some probability distribution p(x|θ?), and we want to find a parameter θ ∈ Θ that likely generated
x. The likelihood is nothing more than the probability that some θ is the parameter that generated x.
In other words, the likelihood is p(x|θ) [evaluated at x = x], and thinking of θ as the variable.

Example 4.2. Let x1, . . . , xN
iid∼ N (µ?, σ2) with σ2 known and µ? unknown. To find µ̂ML we use

elemental techniques from optimization: take the derivative, set to zero, and solve for the desired
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parameter. First observe that since p > 0,

µ̂ML = arg max
µ∈R

p(x1, . . . , xN|µ) = arg max
µ∈R

log p(x1, . . . , xN|µ) = arg max
µ∈R

log

(
N∏

i=1

p(xi|µ)

)

= arg max
µ∈R

N∑
i=1

log p(xi|µ) = arg max
µ∈R

N∑
i=1

log

(
1√
2πσ

e−
1
2 ( xi−µ

σ )
2
)

= arg max
µ∈R

N∑
i=1

log
( 1√

2πσ

)
︸ ︷︷ ︸

constant

+

N∑
i=1

log
(
e−

1
2 ( xi−µ

σ )
2)

= arg max
µ∈R

−
N∑

i=1

1

2

(xi − µ
σ

)2

.

Taking derivative with respect to (w.r.t.) µ we have

− ∂

∂µ

N∑
i=1

1

2

(xi − µ
σ

)2

=

N∑
i=1

xi − µ
σ

.

Setting to zero and solving for µ we obtain:

µ̂ML =
1

N

N∑
i=1

xi.

4.3 Bias and Variance

Notice that an estimator θ̂ is a function of the observed data x = x. But since x is a random variable, our
estimator will also have some variability. Depending on the particular x that we observe, sometimes our
estimator may be better or worse. Hence it is often useful to use the mean (bias) and variance as a measures
of the stability of our estimator.

Definition 4.2 (Bias, variance). The bias and variance of an estimator θ̂ ∈ RK is defined as

bias(θ̂) := θ? − E[θ̂],

var(θ̂) := E
[∥∥θ̂ − E[θ̂]

∥∥2

2

]
,

where the expectations are w.r.t. the true probability distribution of x, i.e., w.r.t. θ?. If bias(θ̂) = 0 we say
that θ̂ is unbiased.

Intuitively, the bias tells us how close we will get to the true parameter on average. The variance tells us
how far we expect to be from that average. If an estimator is unbiased but has large variance, it is likely
to be inaccurate for our particular sample x = x. Similarly, if an estimator has low variance but is biased,
we expect it to be consistently inaccurate (see Figure 4.2). Ideally, we want an unbiased estimator with low
variance, meaning that we expect it to be close to the true parameter.
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Figure 4.2: An estimator is generally a function of the data. For instance, consider µ̂ML = x from Example 4.3. Since
x ∼ N (µ?, σ2), so does µ̂ML. For example, µ̂ML could take the value x or x′. Left: If σ is large, we can expect µ̂ML to be far
from µ?. In this case the constant estimator µ̂0 (which has zero variance) might be better than µ̂ML. Right: If σ is small, we
can expect µ̂ML to be close to µ?. In this case, µ̂ML would be better than µ̂0.

Example 4.3. Let x ∼ N (µ?, σ2), and consider two estimators: the constant estimator µ̂0 = 0 and the
MLE µ̂ML = x. Then

bias(µ̂0) = µ? − E[µ̂0] = µ? − E[0] = µ? − 0 = µ?,

var(µ̂0) = E
[
(µ̂0 − E[µ̂0])2

]
, = E

[
(0− 0)2

]
= 0,

bias(µ̂ML) = µ? − E[µ̂ML] = µ? − E[x] = µ? − µ? = 0,

var(µ̂ML) = E
[
(µ̂ML − E[µ̂ML])2

]
= E

[
(x− µ?)2

]
= var(x) = σ2.

If µ? is small, µ̂0 will always be close to µ?, regardless of the particular x that we observe. In addition,
if σ is big, depending on the particular x that we observe, µ̂ML could be far from µ?. In this case µ̂0

would be better. For similar arguments, if µ? is big and σ is small, µ̂ML would be better. See Figure
4.2 to build some intuition.

4.4 Error/Loss and Risk

Example 4.3 shows that some estimators are more accurate than others. As we saw, the bias and variance
are good indicators of an estimator’s performance. As we will see, these are particular cases of a more general
way to measure how good an estimator is: the risk. To define it, we first need to introduce the concept of
error, often also known as loss.

Definition 4.3 (Error/loss). An error or loss function is a mapping ` : Θ→ R+ that measures the distance

between θ? and θ̂.

Example 4.4. Here are some common loss functions, with Θ = RK:
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• 0/1 loss:

`0(θ̂) := 1{θ̂ 6=θ?} =

{
0 if θ̂ = θ?,

1 if θ̂ 6= θ?.

• `1 loss (absolute error):

`1(θ̂) := ‖θ̂ − θ?‖1 =

K∑
k=1

|θ̂k − θ?k|.

• `2 loss (squared error):

`2(θ̂) := ‖θ̂ − θ?‖22 = (θ̂ − θ?)T(θ̂ − θ?) =

K∑
k=1

(θ̂k − θ?k)2.

• `l log-probability:

`l(θ̂) := − log p(x|θ̂),

which measures the distance from θ? because x is truly distributed p(x|θ?). We can interpret θ̂
as arg minθ `l(θ)

Recall that an estimator θ̂ is a function of the observed data x = x. But since x is a random variable, our
estimator will also have some variability. Depending on the particular x that we observe, sometimes our
estimate may be better or worse. Hence a better indicator of our estimator’s performance is the expected
error/loss, also known as risk.

Definition 4.4 (Risk).

Risk(θ̂) := E
[
`(θ̂)

]
.

Example 4.5. Continuing with Example 4.4,

Risk0(θ̂) := E
[
`0(θ̂)

]
= E

[
1{θ̂ 6=θ?}

]
= P(θ̂ 6= θ?),

Risk1(θ̂) := E
[
`1(θ̂)

]
= E

[
‖θ̂ − θ?‖1

]
,

Risk2(θ̂) := E
[
`2(θ̂)

]
= E

[
‖θ̂ − θ?‖22

]
=: MSE(θ̂),

Riskl(θ̂) := E
[
`l(θ̂)

]
= E

[
− log p(x|θ̂)

]
,

where MSE stands for mean squared error.

The next proposition shows that the bias and variance have a tight relation with a particular kind of risk,
namely with Risk2 = MSE.
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Proposition 4.1 (MSE = bias2 + var).

MSE(θ̂) = bias(θ̂)Tbias(θ̂) + var(θ̂).

Proof. Write

MSE(θ̂) = E
[
‖θ̂ − θ?‖22

]
= E

[
‖(θ̂−E[θ̂]) + (E[θ̂]︸ ︷︷ ︸

0

−θ?)‖22
]

= E

[(
(θ̂ − E[θ̂]) + (E[θ̂]− θ?)

)T(
(θ̂ − E[θ̂]) + (E[θ̂]− θ?)

)]
= E

[
(θ̂ − E[θ̂])T(θ̂ − E[θ̂]) + 2(θ̂ − E[θ̂])T(E[θ̂]− θ?) + (E[θ̂]− θ?)T(E[θ̂]− θ?)

]
= E

[
(θ̂ − E[θ̂])T(θ̂ − E[θ̂])

]
+ 2E

[
(θ̂ − E[θ̂])T (E[θ̂]− θ?)︸ ︷︷ ︸

constant

]
+ E

[
(E[θ̂]− θ?)T (E[θ̂]− θ?)︸ ︷︷ ︸

constant

]
= E

[∥∥θ̂ − E[θ̂]
∥∥2

2

]
+ 2E

[
θ̂ − E[θ̂]

]T
(E[θ̂]− θ?) + E

[
E[θ̂]− θ?

]T
(E[θ̂]− θ?)

= E
[∥∥θ̂ − E[θ̂]

∥∥2

2

]
︸ ︷︷ ︸

var(θ̂)

+ 2 (E[θ̂]− E[θ̂])︸ ︷︷ ︸
0

T(E[θ̂]− θ?) + (E[θ̂]− θ?︸ ︷︷ ︸
bias(θ̂)

)T(E[θ̂]− θ?︸ ︷︷ ︸
bias(θ̂)

).

Example 4.6. Consider Example 4.1. Then

µ̂ML = arg max
µ∈Rk

p(x1, . . . ,xN|µ) = arg max
µ∈RD

N∏
i=1

p(xi|µ) = arg max
µ∈RD

log

N∏
i=1

p(xi|µ)

= arg max
µ∈RD

N∑
i=1

log p(xi|µ) = arg max
µ∈RD

N∑
i=1

log

(
1

(
√

2πσ)D
e−

1
2σ2

(xi−µ)T(xi−µ)

)

= arg max
µ∈RD

N∑
i=1

log
1

(
√

2πσ)D︸ ︷︷ ︸
constant

−
N∑

i=1

1

2σ2︸︷︷︸
constant

(xi − µ)T(xi − µ)

= arg max
µ∈RD

−
N∑

i=1

(xi − µ)T(xi − µ) = arg max
µ∈RD

−
N∑

i=1

(
xT

i xi − 2xT
i µ+ µTµ

)
= arg max

µ∈RD

N∑
i=1

(
2xT

i µ− µTµ
)
.

Now we use our usual tricks: take derivative w.r.t. µ, set to zero and solve for µ. To learn more about
how to take derivatives w.r.t. vectors and matrices see Old and new matrix algebra useful for statistics
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Figure 4.3: Example 4.6 shows that µ̂ML = 1
N

∑N
i=1 xi. This implies that µ̂ML ∼ N (µ?II,

σ2

N
I). As N grows, var(µ̂ML) shrinks,

and we expect µ̂ML to be closer to µ?.

by Thomas P. Minka.

∂

∂µ

N∑
i=1

(
2xT

i µ− µTµ
)

=

N∑
i=1

∂

∂µ

(
2xT

i µ− µTµ
)

=

N∑
i=1

(2xi − 2µ) = 2

N∑
i=1

xi − 2Nµ = 0.

It follows that

µ̂ML =
1

N

N∑
i=1

xi.

Next notice that

E[µ̂ML] = E

[
1

N

N∑
i=1

xi

]
=

1

N

N∑
i=1

E [xi] =
1

N

N∑
i=1

µ?II = µ?II.

Hence bias(µ̂ML) = 0. On the other hand,

var(µ̂ML) = var
( 1

N

N∑
i=1

xi

)
=

1

N2

N∑
i=1

var (xi) =
1

N2

N∑
i=1

Dσ2 =
Dσ2

N
.

Hence

MSE(µ̂ML) =
Dσ2

N
.

4.5 Excess Risk/Regret and KL Divergence

Each sample x has a certain probability of being observed, namely p(x|θ?). An other way to analyze how
good is an estimator is by comparing p(x|θ?) against the probability of the same sample under the estimator,

i.e., p(x|θ̂). This is the idea behind the concept of excess risk or regret: to compare p(x|θ?) against p(x|θ̂).

Equivalently, we can compare log p(x|θ?) against log p(x|θ̂). This is done thinking about cases where we

have i.i.d. samples x1, . . . , xN, so that log p(x|·) factors nicely into
∑N

i=1 log p(xi|·). Finally, since samples
are random variables, it is better to compare the expected values of these quantities, which is precisely what
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the regret compares.

Definition 4.5 (Excess risk/regret).

Regret(θ̂) := E
[

log p(x|θ?)
]
− E

[
log p(x|θ̂)

]
.

The next proposition shows that the regret is the Kullback-Leibler divergence (KL divergence).

Proposition 4.2 (Regret = KL divergence).

Regret(θ̂) = D
(
p(x|θ?)

∥∥∥p(x|θ̂)
)

:=

∫
p(x|θ?) log

p(x|θ?)
p(x|θ̂)

dx.

Proof.

E
[

log p(x|θ?)
]
− E

[
log p(x|θ̂)

]
= E

[
log p(x|θ?)− log p(x|θ̂)

]
= E

[
log

p(x|θ?)
log p(x|θ̂)

]
.

D is a well-studied function. Proposition 4.2 allows us to translate from Regret to D and use all the machinery
and results known for D.

Example 4.7. Suppose x1, . . . , xN
iid∼ N (µ?, σ?

2

). Then the regret of any estimator θ̂ = {µ̂, σ̂} is the
well-known KL divergence of two gaussian distributions:

Regret(θ̂) = log
( σ̂
σ?

)
+
σ?2 + (µ? − µ̂)2

2σ̂2
− 1

2
.

Here is an other example of the usefulness of Proposition 4.2:

Proposition 4.3 (Information inequality).

D
(
p(x|θ?)

∥∥∥p(x|θ̂)
)
≥ 0

with equality if and only if p(x|θ?) = p(x|θ̂).

Proof. See Theorem 2.6.3 in Elements of Information Theory by Cover and Thomas, second edition.
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Proposition 4.3 implies that (as intuition suggests) in expectation, the true distribution p(x|θ) is more likely

to have produced x than any other distribution p(x|θ̂). See Elements of Information Theory by Cover and
Thomas to learn more about KL-divergence, entropy and other useful information theory functions and
results.

4.6 Estimators of Functions

Often we want to estimate a function g of θ?.

Example 4.8. Suppose we observe x1, . . . , xN
iid∼ Poisson(λ?), with λ? ∈ R unknown. We want to

know the probability γ that a new sample x is larger than λ?. Here γ = g(λ?) = P(x ≥ λ?).

The next theorem shows that the MLE of a function is the function of the MLE.

Theorem 4.1 (Invariance of the MLE). Let x1, . . . , xN
iid∼ p(x|θ?). Let γ? = g(θ?) for some function

g : Θ� Γ. Then the MLE of γ?, defined as

γ̂ML := arg max
γ∈Γ

(
max

θ∈g−1(γ)
p(x|θ)

)
,

is given by γ̂ML = g(θ̂ML). Here g−1 denotes the inverse image of g, i.e., g−1(γ) = {θ ∈ Θ : g(θ) = γ}.

Think of γ? as a parameter (that is a function of θ?) that we also want to estimate.

Proof. Γ is defined as the range of g, so even if g is not one-to-one, the sets {g−1(γ)}γ∈Γ form a partition of
Θ (see Figure 4.4 to build some intuition). Therefore,⋃

γ∈Γ

g−1(γ) = Θ,

which in turns implies

max
γ∈Γ

(
max

θ∈g−1(γ)
p(x|θ)

)
= max

θ∈Θ
p(x|θ).
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Figure 4.4: In Theorem 4.1, since {g−1(γ)}γ∈Γ forms a partition of Θ, taking the max over Θ is the same as first taking
the max of over each individual g−1(γ), highlighted in blue, and then taking the max over these maximums. More precisely,
maxθ∈Θ · = maxγ∈Γ(maxθ∈g−1(γ) ·).

Example 4.9. Continuing with Example 4.8, we can use Theorem 4.1 to first compute λ̂ML and then
obtain γ̂ML = g(λ̂ML) = P(X > λ̂ML).

λ̂ML = arg max
λ∈R

N∏
i=1

P(x = xi|λ) = arg max
λ∈R

log

N∏
i=1

P(x = xi|λ) = arg max
λ∈R

N∑
i=1

logP(x = xi|λ)

= arg max
λ∈R

N∑
i=1

log
λxie−λ

xi!
= arg max

λ∈R

N∑
i=1

log λxi −
N∑

i=1

λ−
N∑

i=1

log xi!︸ ︷︷ ︸
constant

= arg max
λ∈R

N∑
i=1

xi log λ−Nλ = arg max
λ∈R

log λ

N∑
i=1

xi −Nλ.

It follows that

∂

∂λ

(
log λ

N∑
i=1

xi −Nλ
)

=
1

λ

N∑
i=1

xi −N.

Setting to zero and solving for λ we have:

λ̂ML =
1

N

N∑
i=1

xi.

It follows by Theorem 4.1 that

γ̂ML = g(λ̂ML) = P(x > λ̂ML) = P
(
x >

1

N

N∑
i=1

xi

)
.

4.7 Asymptotics

Example 4.6 shows that the larger N, i.e., the more training samples we have, the closer µ̂ML will be to the
true skip signal µ?II that we want to estimate (see Figure 4.3). This is a desirable property in an estimator
called consistency.
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Definition 4.6 (Consistency). We say θ̂ is consistent if θ̂ → θ? as N → ∞. More precisely, θ̂ is consistent

w.r.t. Risk if Risk(θ̂)→ 0 as N→∞.

Example 4.10. µ̂ML from Example 4.6 is consistent w.r.t. Risk = MSE, because

MSE(µ̂ML) = E
[
‖µ̂ML − µ?II‖22

]
=

Dσ2

N

N→∞−−−−→ 0,

i.e., µ̂ML → µ?II as N→∞.

As mentioned before, an estimator is a function of the data we observe, and hence it is a random variable. The
next theorem states that if we observe a large number N of i.i.d. samples, then regardless of the distribution
of these data, θ̂ML will be distributed normal, centered at θ?, and with variance decreasing with N, implying
consistency.

Theorem 4.2 (Asymptotic distribution of the MLE). Let x1, . . . ,xN
iid∼ p(x|θ?), with θ? ∈ RK. Let

L(θ) :=

N∑
i=1

log p(xi|θ).

Suppose
∂L(θ)

∂θk
and

∂2L(θ)

∂θkθ`
exist for every k, ` ∈ {1, . . . ,K}. Then

θ̂ML
N→∞∼ N

(
θ?,

1

N
I−1
θ?

)
,

where Iθ? is the Fisher-information matrix, whose elements are defined as:

[Iθ? ]k` := −E
[
∂2L(θ)

∂θk∂θ`

∣∣∣
θ=θ?

]
.

Proof. The proof follows as a consequence of the central limit theorem, which says that if x1, . . . , xN are
i.i.d. with mean µ and variance σ2, then 1√

N

∑N
i=1 xi is asymptotically distributed N (µ, σ2). For a detailed

proof see Theorem 10.1.12 in Statistical Inference by George Casella and Roger L. Berger, second edition.

Example 4.11 (Exam-type question). We want to find out which of two treatments is more effective.
So we give treatment k to nk people, and record the number xk of people that react favorably to
treatment k (k = 1, 2). We can model this as xk ∼ Binomial(nk,p

?
k), where x1 is independent of x2.

Then the difference δ? = p?1 − p?2 would be a good indicator of which treatment is more effective, and
by how much. To estimate δ? (which is a function of p?1 and p?2), we can first estimate p?1 and p?2, and
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then use Theorem 4.1. First notice that,

p̂k = arg max
pk∈[0,1]

P(xk = xk|pk) = arg max
pk∈[0,1]

logP(xk = xk|pk) = arg max
pk∈[0,1]

L(pk).

Next we will use our usual tricks: take derivative, set to zero and solve for the desired parameters.

∂L(pk)

∂pk
=

∂

∂pk
log

((
nk

xk

)
pxk

k (1− pk)nk−xk

)
=

∂

∂pk

(
log

(
nk

xk

)
︸ ︷︷ ︸

constant

+ log pxk

k + log(1− pk)nk−xk

)

=
∂

∂pk

(
xk log pk + (nk − xk) log(1− pk)

)
=

xk

pk
− nk − xk

1− pk
.

Setting to zero,

0 =
xk(1− pk)− (nk − xk)pk

pk(1− pk)
= xk −���xkpk − nkpk +���xkpk = xk − nkpk,

and solving for pk we obtain p̂k =
xk

nk
. It follows by Theorem 4.1 that

δ̂ML = p̂1 − p̂2 =
x1

n1
− x2

n2
.

Theorems 4.1 and 4.2 imply that δ̂ML → δ? as n1,n2 → ∞ (can you show this?). But we can also use

them to quantify how accurate our estimator δ̂ML will be. For example, if we only test nk = 1 people
per treatment, our estimator might not be very reliable. We want to know how many people we need
to test to guarantee that δ̂ML is pretty close to the true δ?. More precisely, we want

P
(∣∣δ̂ML − δ?

∣∣ ≥ β) ≤ α.
Recall that the sum of binomials is only binomial if they share the same p. Hence we do not know the
distribution of δ̂ML. Fortunately, we can use Theorem 4.2 to know its asymptotic distribution. To this
end, we first need to compute Ip?k

, so write:

∂2L(pk)

∂2pk
=

∂

∂pk

(xk

pk
− nk − xk

1− pk

)
= xk

∂p−1
k

∂pk
− (nk − xk)

∂(1− pk)−1

∂pk

= −xkp−2
k − (nk − xk)(1− pk)−2 = −xk

p2
k

− nk − xk

(1− pk)2
.

Hence

Ip?k
= −E

[
∂2L(pk)

∂2pk

∣∣∣
pk=p?k

]
= −E

[(
−xk

p2
k

− nk − xk

(1− pk)2

) ∣∣∣
pk=p?k

]
= E

[
xk

p?2k

+
nk − xk

(1− p?k)2

]
=

E[xk]

p?2k

+
nk − E[xk]

(1− p?k)2

=
nkpk

p?2k

+
nk − nkpk

(1− p?k)2
=

nk

p?k
+

nk(1− pk)

(1− p?k)2

=
nk

p?k
+

nk

1− p?k
= nk

1− p?k + p?k
p?k(1− p?k)

=
nk

p?k(1− p?k)
,
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Figure 4.5: In Example 4.11, P(|δ̂ML− δ?| ≥ β) ≤ P(|δ̃| ≥ β), where δ̃ ∼ N (0, 1
2nk

). As nk grows, var(δ̃) shrinks, and hence so

does P(|δ̃| ≥ β). We want to find the nk to guarantee that P(|δ̃| ≥ β) ≤ α. This will also imply that P(|δ̂ML − δ?| ≥ β) ≤ α.

which implies

I−1
p?k

=
p?k(1− p?k)

nk
.

By Theorem 4.2, p̂k
N→∞∼ N

(
p?k,

1
N

p?k(1−p?k)
nk

)
, with N = 1 (because we only observe one x1 and one x2).

Since sums of gaussians are gaussians, it follows that

δ̂ML
N→∞∼ N

(
p?1 − p?2,

p?1(1− p?1)

n1
+

p?2(1− p?2)

n2

)
.

Now suppose for simplicity that we will test the same patients for each treatment, i.e., n1 = n2. Then
this simplifies to

δ̂ML
N→∞∼ N

(
δ?,

p?1(1− p?1) + p?2(1− p?2)

nk

)
.

Next observe that since p(1 − p) ≤ 1/4 for every p ∈ [0, 1], the asymptotic variance of δ̂ML is bounded
by 1

2nk
. Letting δ̃ be a N (0, 1

2nk
) distributed random variable,

P
(∣∣δ̂ML − δ?

∣∣ ≥ β) ≤ P
(∣∣δ̃∣∣ ≥ β) = 2Q0, 1

2nk

(β) = 2Q(
√

2nkβ).

See Figure 4.5 to build some intuition. If we want 2Q(
√

2nkβ) ≤ α, then we need to test

nk ≥
(Q−1 (α/2)√

2β

)2

(4.1)

patients per treatment.

4.8 Experiments

It is often good to run some experiments to verify that our findings are correct. For instance, we can run a
simulation of Example 4.11.

Recall that the ultimate goal in Example 4.11 is to determine which of two treatments is better, and by how



Topic 4: Parameter Estimation 4-14

Figure 4.6: Results of the simulation of Example 4.11. In black is the histogram of δ̂ML over T = 100 trials. In blue is the
asymptotic distribution of δ̂ML. In red is the probability α that |δ̂ML− δ?| ≥ β. Notice that as nk grows, the variance of δ̂ML

decreases, and so δ̂ML gets closer and closer to δ?. The code for this simulation is in the appendix.

much. This is determined by δ?, so our goal is to estimate δ?. To this end, we need to know how many
patients nk we need to test on each treatment to be (1 − α)% sure that our estimate δ̂ML will be within β

error of δ?, i.e., we want P(|δ̂ML − δ?| ≥ β) ≤ α. Using Theorems 4.1 and 4.2 we found that nk needs to
be as in (4.1). We can run a simulation to verify whether this is accurate as follows.

First generate random vectors yk ∈ Rnk with i.i.d. Bernoulli(p?k) entries. The ith entry in yk simulates
whether patient i reacted favorably to treatment k. Then xk is simply the sum of the entries in yk. From

our results in Example 4.11 we know that δ̂ML = x1

n1
− x2

n2
.

We can repeat this experiment T trials, plot a histogram of δ̂ML, and verify whether δ̂ML truly is within β
of δ? on (1− α)% of the trials. Furthermore, we can compare it with the asymptotic distribution obtained
by Theorem 4.2. Figure 4.6 shows some results. The code for this simulation is in the appendix.

4.9 Cramer-Rao Lower Bound

Theorem 4.2 tells us that θ̂ML → θ? at a rate of 1/
√

N (because var(θ̂ML) = E[(θ̂ML − θ?)2] = 1
NI
−1
θ? ).

Intuitively, this means that we need about N samples to be within 1/
√

N error. This raises the question: is
there a better estimator? For example, one that achieves 1/N error with the same number of samples? The
next theorem shows that this is not the case. More precisely, it shows that there exists no estimator with a
faster convergence rate than 1/

√
N.

Theorem 4.3 (Cramer-Rao Lower Bound). Let x1, . . . ,xN
iid∼ p(x|θ?), with θ? ∈ RK. Suppose ∂L(θ)

∂θk

and ∂2L(θ)
∂θkθ`

exist for every k, ` ∈ {1, . . . ,K}. Let θ̂ be an unbiased estimator of θ?. Define the error
covariance matrix as

Ĉ := E
[
(θ̂ − θ?) (θ̂ − θ?)T

]
.

Then

Ĉ � 1

N
I−1
θ? ,

where � means that the eigenvalues of Ĉ − 1
NI
−1
θ? are ≥ 0
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Proof. We will prove this for D = K = 1, i.e., x1, . . . , xN, θ ∈ R are scalars. The general result follows by
similar arguments. Since θ̂ is unbiased, we know

0 = E[θ̂ − θ?] =

∫
(θ̂ − θ?)p(x|θ?)dx.

Taking derivatives w.r.t. θ we have:

0 =
∂

∂θ

∫
(θ̂ − θ)p(x|θ)dx

∣∣∣
θ=θ?

=

∫
∂

∂θ
(θ̂ − θ)︸ ︷︷ ︸

u

p(x|θ)︸ ︷︷ ︸
v

dx
∣∣∣
θ=θ?

=

∫
−p(x|θ)dx

∣∣∣
θ=θ?︸ ︷︷ ︸

−1

+

∫
(θ̂ − θ)∂p(x|θ)

∂θ
dx
∣∣∣
θ=θ?

.

Recall that

∂ log p(x|θ)
∂θ

=
1

p(x|θ)
∂p(x|θ)
∂θ

.

Plugging this into the previous equation, we get

1 =

∫
(θ̂ − θ)∂ log p(x|θ)

∂θ
p(x|θ)dx

∣∣∣
θ=θ?

= E
[
(θ̂ − θ) · ∂ log p(x|θ)

∂θ

∣∣∣
θ=θ?

]
≤
√
E
[
(θ̂ − θ?)2

]︸ ︷︷ ︸√
var(θ̂)

√
E

[(∂ log p(x|θ)
∂θ

)2∣∣∣
θ=θ?

]
, (4.2)

where the last step follows by the Cauchy-Schwartz inequality: for two random vectors x,y, we define their
inner product as 〈x,y〉 := E[xTy] and their norm as ‖x‖22 := 〈x,x〉 = E[xTx]. Then the Cauchy-Schwartz
inequality (|〈x,y〉| ≤ ‖x‖‖y‖) becomes:∣∣E[xTy]

∣∣ ≤ √
E[xTx] E[yTy].

We will now show that the second term in (4.2) is −
√
Iθ? . Write:

∂2 log p(x|θ)
∂θ2

=
∂

∂θ

(
∂ log p(x|θ)

∂θ

)
=

∂

∂θ

(
1

p(x|θ)
∂p(x|θ)
∂θ

)
= − 1

p(x|θ)2

∂p(x|θ)
∂θ

∂p(x|θ)
∂θ

+
1

p(x|θ)
∂2p(x|θ)
∂θ2

= −
( 1

p(x|θ)
∂p(x|θ)
∂θ︸ ︷︷ ︸

∂ log p(x|θ)
∂θ

)2

+
1

p(x|θ)
∂2p(x|θ)
∂θ2

.

For the second term write:

E

[
1

p(x|θ)
∂2p(x|θ)
∂θ2

]
=

∫
1

p(x|θ)
∂2p(x|θ)
∂θ2

p(x|θ)dx =

∫
∂2p(x|θ)
∂θ2

dx =
∂2

∂θ2

∫
p(x|θ)dx︸ ︷︷ ︸

1

= 0.

It follows that

E

[(∂ log p(x|θ)
∂θ

)2∣∣∣
θ=θ?

]
= E

[
∂2 log p(x|θ)

∂θ2

∣∣∣
θ=θ?

]
= E

[
∂2 log

∏N
i=1 p(xi|θ)
∂θ2

∣∣∣
θ=θ?

]

= E

[
∂2
∑N

i=1 log p(xi|θ)
∂θ2

∣∣∣
θ=θ?

]
= NE

[
∂2 log p(xi|θ)

∂θ2

∣∣∣
θ=θ?

]
= −NIθ?
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Plugging this in (4.2) and taking squares, we have:

var(θ̂) ≥ 1

N
I−1
θ? ,

as desired.

4.10 Mixtures

Theorem 4.3 shows that the MLE is optimal in the sense that it achieves the best convergence rate to the
true parameter. However, it is not always easy, or even possible, to derive or compute the MLE.

Example 4.12. Suppose we observe x1, . . . , xN from a mixture of K gaussians (see Figure 4.7):

xi
iid∼ p(x|θ?) =

K∑
k=1

ρ?k N (µ?k, σ
?2
k ) =

K∑
k=1

ρ?k
1√

2πσ?k
e
− 1

2

(
x−µ?k
σ?
k

)2

.

where ρ1, . . . , ρK ≥ 0 and
∑K

k=1 ρk = 1. ρk is the probability that a sample corresponds to the kth

gaussian. In this case θ? = [θ?k · · · θ?k]T, where θ?k = {ρ?k, µ?k, σ?k}, and computing the MLE

arg max
θ∈Θ

p(x|θ) = arg max
θ∈Θ

log p(x|θ).

is not so easy because the log of a sum does not factor nicely, i.e., p(x|θ) is no longer convex.

In cases like these where it is not easy to compute the MLE. Estimating mixtures is an active field of research,
as they are good models for classification. So, how would you do it? Give it some thought. Maybe you come
up with a great idea and you’d become famous! ;)

Figure 4.7: See Example 4.12. In a mixture each sample xi is drawn according to one out of K distributions that we want to
estimate. The challenge is that we don’t know which distribution generated each xi, and so we don’t know which xi’s should
be used to estimate the kth parameter. In this illustration we only observe the black points. If we knew which one is red and
which one is blue, we could use only the red to estimate {µ?1, σ?1} and only the blue to estimate {µ?2, σ?2}. The challenge is that
we don’t know the colors, and so we also have to estimate which distribution each point belongs to. Here ρ?k ∈ [0, 1] models the

fraction of points that correspond to the kth distribution, which also has to be estimated. So, how would you do it? Give it
some thought. Maybe you come up with a great idea and you’d become famous! ;)
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A Code for Simulation of Example 4.11

1 clear all; close all; clc;
2

3 % ===== Code to simulate the asymptotic distribution of delta hat =====
4 % ===== See Example 4.11.
5

6 T = 100; % Number of trials.
7 beta = 0.1; % Error margin that we want.
8 alpha = 0.05; % Allowed probability of having bigger error that we want.
9 p1 star = 0.75; % True probability of reacting favorably to treatment 1.

10 p2 star = 0.25; % True probability of reacting favorably to treatment 1.
11 delta star = p1 star-p2 star; % Parameter we want to estimate.
12 delta hat = zeros(T,1); % Estimates of delta star over trials.
13

14 % Number of patients to test each treatment, to guarantee desired accuracy.
15 nk = ceil(norminv(alpha/2)/(sqrt(2)*beta))ˆ2;
16

17 for t=1:T,
18 % Yk contains the outcomes of the patients given treatment k,
19 % 1=reacted favorably, 0=not favorably.
20 Y1 = rand([nk,1]) < p1 star;
21 Y2 = rand([nk,1]) < p2 star;
22

23 % Xk is the number of patients that reacted favorably to treatment k.
24 X1 = sum(Y1);
25 X2 = sum(Y2);
26

27 % hat pk is the estimate of pk star.
28 p1 hat = X1 / nk;
29 p2 hat = X2 / nk;
30

31 delta hat(t) = p1 hat - p2 hat;
32 end
33

34 % Plot results.
35 figure(1);
36 axes('Box','on');
37 hold on;
38 [h,rangeh] = hist(delta hat);
39 stem(rangeh,h,'k','LineWidth',4,'MarkerSize',20);
40

41 % Asymptotic distribution of delta hat.
42 range = 0:.001:1;
43 mu delta = delta star;
44 sigma delta = sqrt((p1 star*(1-p1 star) + p2 star*(1-p2 star))/nk);
45 asymptotic dist = normpdf(range,mu delta,sigma delta);
46 plot(range,asymptotic dist/max(asymptotic dist)*max(h),'b','LineWidth',4);
47

48 % Highlight beta and the probability alpha.
49 bounds alpha = [0:.025:delta star-beta,delta star+beta:0.025:1];
50 region alpha = normpdf(bounds alpha,mu delta,sigma delta);
51 stem(bounds alpha,region alpha/max(asymptotic dist)*max(h),'r',...
52 'LineWidth',5,'MarkerSize',1);
53

54 % Make figure look sexy.
55 axis tight;
56 set(gca,'XTick',[0:.1:1],'xticklabel',...
57 {'0','.1','.2','.3','.4','\delta*=.5','.6','.7','.8','.9','1'},...
58 'fontsize',15);
59 set(gca,'YTick',[],'yticklabel',[]);
60 ylabel('p$(\hat{\delta} {ML})$','Interpreter','latex','fontsize',25);
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61 xlabel('$\hat{\delta} {ML}$','Interpreter','latex','fontsize',30);
62 title(['$\beta=$',num2str(beta),'$\ \ \ \Rightarrow \ \ {\rm n} {\rm ...

k}=$',num2str(nk)],'Interpreter','latex','fontsize',30);
63

64 % Save figure.
65 set(gcf, 'renderer','default');
66 figurename = ['asymptotic beta',num2str(beta),',nk',num2str(nk),'.pdf'];
67 saveas(gcf,figurename);
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