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5.1 Introduction

We already started studying composite hypothesis problems of the form:

H0 : x ∼ p0(x|θ?0), θ?0 ∈ Θ0,

H1 : x ∼ p1(x|θ?1), θ?1 ∈ Θ1.
(5.1)

where the parameters θ?0 and/or θ?1 are unknown.

Example 5.1. In Example 3.3 we wanted to determine whether two meteorites came from the same
asteroid in space using the difference x of their magnesium composition. In Example 3.4 we wanted
to determine whether a certain gene was associated with a disease, using the difference x of the gene’s
average activation levels between healthy and sick people. Both of these problems can be modeled as

H0 : x ∼ N (0, σ2) ⇒ same asteroid/gene unrelated to disease,

H1 : x ∼ N (µ?1, σ
2) ⇒ different asteroids/gene related to disease,

where µ?1 is unknown.

Example 5.2. In Example 4.1 we use an array of sensors to record small voltages generated by your
brain and store them in a signal vector x ∈ RD. A machine (phone, computer, server, etc.) should

Figure 5.1: Gene microarrays are data matrices indicating gene activation levels. Each row corresponds to one gene, and each
column corresponds to one individual. We want to know which genes are related to a disease. See Example 5.1.
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...

Figure 5.2: Sensors record small voltages generated by your brain and store them in a signal vector x ∈ RD. A machine (phone,
computer, server, etc.) should interpret x and skip the song if that is what you thought about. See Example 5.2.

interpret x and skip the song if that is what you thought about. This can be modeled as

H0 : x ∼ N (0, σ2I) ⇒ do nothing,

H1 : x ∼ N (µ?II, σ
2I) ⇒ skip song,

where µ?II is unknown.

In Section 3.7 we already studied the hypothesis problems in Example 5.1, which led us to the intuitive
answer of Wald’s test in Example 3.14. We now generalize this using our knowledge from estimation theory
to obtain the generalized likelihood ratio test (GLRT).

Definition 5.1 (Generalized likelihood ratio test (GLRT)). Consider a hypothesis problem as in (5.1), where
θ?0 and/or θ?1 are unknown. The generalized likelihood ratio statistic is defined as:

Λ̂(x) :=
max
θ1∈Θ1

p1(x|θ1)

max
θ0∈Θ0

p0(x|θ0)
,

and the generalized likelihood ratio test is defined as Λ̂(x) ≷H1

H0
τ .

The idea behind the GLRT is actually quite simple: if you don’t now a parameter, then first estimate it
using maximum likelihood, and then use it as if it were the true parameter in a likelihood ratio test (LRT).

Example 5.3 (Derivation of Wald’s test as a GLRT). Let us show that Wald’s test is just one particular
case of the GLRT. Consider The setup in Example 5.1. Here θ0 is known, and θ?1 = µ?1, so Θ1 = R.
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Then

arg max
θ1∈Θ1

p1(x|θ1) = arg max
µ1∈R

p1(x|µ1) = arg max
µ1∈R

1√
2πσ

e
− 1

2

(
x−µ1
σ

)2

= arg max
µ1∈R

log
( 1√

2πσ
e−

1
2 ( x−µ1

σ )
2)

= arg max
µ1∈R

log
1√
2πσ︸ ︷︷ ︸

constant

−1

2

(x− µ1

σ

)2

= arg max
µ1∈R

− 1

2σ2︸︷︷︸
constant

(x− µ1)2 = arg max
µ1∈R

(µ1 − x)2

To find this maximum we use our usual tricks: take derivative with respect to (w.r.t.) µ1, set to zero
and solve for µ1.

∂

∂µ1
(µ1 − x)2 = 2(µ1 − x) = 0

Which yields µ̂1 = x. Then

Λ̂(x) =
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θ1∈Θ1

p1(x|θ1)

max
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p0(x|θ0)
=
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and our GLRT is e
x2

2σ2

H1

≷
H0

τ . Taking log on both sides this becomes
x2

2σ2

H1

≷
H0

log τ , or equivalently

|x|
H1

≷
H0

τ ′,

where τ ′ =
√

2σ2 log τ , which is precisely Wald’s test from Example 3.14.

5.2 Asymptotics

Recall that in hypothesis testing we often want to bound the probability p10 of deciding H1 when H0 was
true, and so we select our threshold test τ ′ accordingly. For instance, in Wald’s test, p10 = P(|x| > τ ′) given
that H0 is true. Since H0 : x ∼ N (0, σ2), if we want p10 < α, all we need to do is find the τ ′ such that the
probability of the tails of a N (0, σ2) is α (see Figure 5.3 to build some intuition). We can do this because
we know the distribution of |x|. Similarly, if we had a test like:

N∑
i=1

x2
i

H1

≷
H0

τ ′, (5.2)

where H0 : xi
iid∼ N (0, 1), we would also know that

∑N
i=1 x

2
i ∼ χ2(N). Again, if we wanted p10 < α, all we

would need to do is find the τ ′ such that the probability of the tail of a χ2(N) is α (see Figure 5.3 for more
intuition).

However, we don’t always know the distribution of our test. For example, if we had the same test in (5.2),

but with H0 : xi
iid∼ Poisson, or Cauchy, or Weibull, then what is the distribution of

∑N
i=1 x

2
i ? The following

theorem states that if N is large enough, we don’t need to worry about it, because under H0, the GLRT is



Topic 5: Generalized Likelihood Ratio Test 5-4

Figure 5.3: We want our test to have p10 < α. Left: If our test is |x|≷H1

H0
τ ′ and x ∼ N (0, σ2), then we need to find the τ ′ such

that the probability of the tails of a N (0, σ2) is α. Right: if our test is
∑N

i=1 x2
i ≷H1

H0
τ ′ and xi

iid∼ N (0, 1), then we need to

find the τ ′ such that the probability that the tail of a χ2(N) is α. We can do this because we know the distribution of our test.
What happens if we don’t? Wilks’ Theorem gives us an answer.

asymptotically distributed χ2(N).

Theorem 5.1 (Wilks’ Theorem — Asymptotic distribution of the GLRT). Consider a composite hy-
pothesis problem of the form:

H0 : x1, . . . , xN
iid∼ p(x|θ?0), θ?0 ∈ RK0 ,

H1 : x1, . . . , xN
iid∼ p(x|θ?1), θ?1 ∈ RK1 ,

where p has the same form in both hypotheses, and the K0 unknown parameters in θ?0 are a subset
of the K1 unknown parameters in θ?1 (these are called nested hypotheses). Suppose that for every

k, ` ∈ {1, . . . ,K}, ∂p(x|θ)
∂θk

and ∂2p(x|θ)
∂θk∂θ`

exist, and that E
[
∂ log p(x|θ)

∂θk

]
= 0 (this guarantees that the MLE

θ̂ML converges to the true θ?). Then under H0,

2 log Λ̂(x)
N→∞∼ χ2(K1 −K0).

Proof. The proof follows as a consequence of the central limit theorem. For a detailed proof see Theorems
10.3.1 and 10.3.3 in Statistical Inference by George Casella and Roger L. Berger, second edition.

Example 5.4. Consider

H0 : x1, . . . , xN
iid∼ N (µ, σ0),

H1 : x1, . . . , xN
iid∼ N (µ, σ?21 ), σ?1 > 0.
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The MLE of σ?1 is
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Solving for σ2
1 we obtain the MLE:
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Taking log on both sides we obtain:
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Now the question is: do you know the distribution of − logχ2(N)+χ2(N)? Sure as hell I don’t! Luckily,
there are no unknown parameters under H0, and one unknown parameter under H1 (namely σ?1), so
these are nested hypotheses, and hence can use Theorem 5.1 to know that under H0,

2 log Λ̂(x)
N→∞∼ χ2(1).

Hence, if we want p10 < α, it suffices to select the threshold τ for which the tail probability of a χ2(1)
random variable is α.
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Figure 5.4: Results of the simulation of Example 5.4. In black is the histogram of 2 log Λ̂(x) over T = 100 trials. In blue is

the asymptotic distribution of 2 log Λ̂(x). In red is the probability of error p10 set to α = 0.05. The code for this simulation is
in the appendix.

5.3 Experiments

Let us now run some simulations to verify Theorem 5.1 and our results from Example 5.4. We will generate

x1, . . . , xN
iid∼ N (µ, σ?20 ) and we will compute 2 log Λ̂(x) as in Example 5.4. We will repeat this T trials, plot

a histogram, and compare it with the χ2(1) distribution predicted by Theorem 5.1. Figure 5.4 shows some
results. The code for this simulation is in the appendix.
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A Code for Simulation of Example 5.4

1 clear all; close all; clc; warning('off','all');
2

3 % === Code to simulate the asymptotic distribution of log Lambda hat ===
4 % ===== See Example 5.4.
5

6 T = 100; % Number of trials.
7 N = 100; % Number of samples.
8 mu = 5; % Known mean under both hypotheses.
9 sigma0 star = 1; % True standard deviation of X i under H0.

10 sigma1 star = 2; % True standard deviation of X i under H1.
11 alpha = 0.05; % Allowed probability of error (1|0).
12

13 log Lambda hat = zeros(T,1); %log Lambda hat over trials.
14 for t=1:T,
15 X = (randn(N,1)+mu) * sigma0 star;
16

17 log Lambda hat(t) = -N/2 * log( 1/N * sum(((X-mu)/sigma0 star).ˆ2) ) ...
18 + 1/2 * sum(((X-mu)/sigma0 star).ˆ2) ...
19 - N/2;
20 end
21

22 % Plot results.
23 figure(1);
24 axes('Box','on');
25 hold on;
26 [h,rangeh] = hist(2*log Lambda hat);
27 stem(rangeh,h/T,'k','LineWidth',4,'MarkerSize',20);
28

29 % Asymptotic distribution of 2*log Lambda hat.
30 rangeh = min(rangeh):0.01:max(rangeh);
31 chi2 = chi2pdf(rangeh,1);
32 plot(rangeh,chi2,'b','LineWidth',4);
33

34 % Highlight the probability alpha.
35 tau = chi2inv(1-alpha,1);
36 rangeh = tau:0.125:max(rangeh);
37 chi2 = chi2pdf(rangeh,1);
38 stem(rangeh,chi2,'r','LineWidth',5,'MarkerSize',1);
39

40 % Make figure look sexy.
41 axis tight;
42 set(gca,'XTick',[],'xticklabel',[]);
43 set(gca,'YTick',[],'yticklabel',[]);
44 ylabel('$\mathsf{p}(2\log\hat{\Lambda}($\textbf{x}$)$','Interpreter','latex','fontsize',25);
45 xlabel('$2\log\hat{\Lambda}($\textbf{x}$)$','Interpreter','latex','fontsize',30);
46

47 % Save figure.
48 set(gcf, 'renderer','default');
49 figurename = 'wilks.pdf';
50 saveas(gcf,figurename);
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