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Topic 6: Bayesian Inference

Instructor: Daniel L. Pimentel-Alarcón © Copyright 2017

6.1 Bayesian Hypothesis Testing

Recall from past lectures that in hypothesis testing we observe data x and want to decide between two
hypotheses:

H0 : x ∼ p(x|H0),

H1 : x ∼ p(x|H1),

where p(x|Hh) is just an other way to write ph(x), h ∈ {0, 1}. We saw that one way to do this was using the
likelihood ratio test (LRT):

p(x|H1)

p(x|H0)

H1

≷
H0

τ.

In bayesian hypothesis testing we also want to decide between two hypotheses. The only difference is that
we have some prior knowledge of the probabilities that H0 or H1 are true. That is, we know the priors
p(Hh). As we will see, this will allow us to use the posterior probabilities p(Hh|x) rather than the likelihoods
p(x|Hh). This results in the posterior ratio test.

Definition 6.1 (Posterior ratio test (PRT)).

p(H1|x)

p(H0|x)

H1

≷
H0

τ.

Luckily, a simple application of Bayes rule allows us to express the posteriors in the PRT in terms of the
likelihoods and the priors, thus obtaining the following practical result. In words, it tells us that to obtain
the PRT we simply need to scale the LRT by the priors (see Figure 6.1 to build some intuition).

Proposition 6.1. The PRT is equivalent to:

p(x|H1)p(H1)

p(x|H0)p(H0)

H1

≷
H0

τ.
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Proof. By Bayes rule,

p(H1|x)

p(H0|x)
=

p(x|H1)p(H1)

��p(x)

p(x|H0)p(H0)

��p(x)

=
p(x|H1)p(H1)

p(x|H0)p(H0)
.

Example 6.1. During the Cold War, the U.S. Navy developed boomer submarines that could launch
nuclear missiles at other nations. Their main purpose was to help maintain the Cold War equilibrium by
assuring mutual destruction in case somebody started a nuclear war. A secure bunker would constantly
transmit a signal y to these submarines:

y =

{
0 indicating to stand by,
1 indicating to launch attack.

The submarine would receive a signal x = y+ z (where z ∼ N (0, σ2) represents noise), and would have
to decide between:

H0 : x ∼ N (0, σ2) ⇒ stand by,

H1 : x ∼ N (1, σ2) ⇒ launch attack.

Soldiers at the submarine know that a (1|0) error would have catastrophic consequences, so they want
to minimize p10. Furthermore, they know that it is very unlikely that someone would start a nuclear
war, so they decided to use this information in a bayesian test with a prior p(H1) = 1/5:

p(H1|x)

p(H0|x)
=

p(x|H1)p(H1)

p(x|H0)p(H0)
=

p(x|H1)1/�5

p(x|H0)4/�5
= �

��1√
2πσ

e−
1
2 ( x−1

σ )
2

4
�

��1√
2πσ

e−
1
2 ( x−0

σ )
2 =

1

4
e−

1
2σ2 (��x2−2x+1−��x2)

H1

≷
H0

τ.

Equivalently,

1

2σ2
(2x− 1)

H1

≷
H0

log(4τ)

x
H1

≷
H0

σ2 log(4τ) + 1/2.

The prior knowledge that H1 is unlikely is reflected in the shrinkage of the region of the PRT where
we choose H1. For instance, the LRT would have a larger region for H1. See Figure 6.1 to build some
intuition.

Notice that the PRT has the same form as the LRT, except that τ is scaled by the priors. So an other way
to interpret Proposition 6.1 is as follows:

Proposition 6.2. The PRT
p(H1|x)

p(H0|x)

H1

≷
H0

τ is equivalent to the LRT
p(x|H1)

p(x|H0)

H1

≷
H0

τ ′, with τ ′ = τ
p(H0)

p(H1)
.

Proof. Follows directly from Proposition 6.1
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Figure 6.1: Left: A Polaris missile is launched from a submarine in a demonstration of an advanced weapons system. The
submarine receives a signal x and must decide whether to H0: stand by, or H1: launch an attack. See Example 6.1 Top: LRT
with τ = 1, so that this test selects the hypothesis with the highest likelihood p(x|Hh). Bottom: PRT with τ = 1, so that this
test selects the hypothesis with the highest posterior p(Hh|x). To obtain the PRT we simply need to scale the likelihoods by
their corresponding priors p(Hh). In this case it was known that H1 was unlikely, which resulted in a shrinkage of p(x|H1), as
we can see in this figure.

6.2 Bayesian Parameter Estimation

In past lectures we studied the estimation problem where we observe data

x ∼ p(x|θ?), θ? ∈ Θ,

where θ? is an unknown parameter that we want to estimate. The only difference in bayesian estimation is
that we treat θ? as a random variable, and we assume that we know the prior p(θ) that generated θ?. This
allows us (through Bayes rule) to use the posterior probability p(θ|x) rather than the likelihood p(x|θ). This
results in the maximum a posteriori estimator, whose main idea is to find the θ that maximizes p(θ|x).

Definition 6.2 (Maximum a posteriori (MAP) estimator).

θ̂MAP := arg max
θ∈Θ

p(θ|x).

Using Bayes rule, we obtain the following practical result, which tells us that the posterior p(θ|x) is simply
the likelihood p(x|θ) scaled by p(θ).

Proposition 6.3. The MAP estimator is given by

θ̂MAP = arg max
θ∈Θ

p(x|θ)p(θ).



Topic 6: Bayesian Inference 6-4

Proof. By Bayes rule,

θ̂MAP := arg max
θ∈Θ

p(θ|x) = arg max
θ∈Θ

p(x|θ)p(θ)

p(x)︸︷︷︸
constant

= arg max
θ∈Θ

p(x|θ)p(θ).

Example 6.2 (Pharmaceuticals loooove bayesian estimation). Scientists at a big pharmaceutical com-
pany have designed a new cancer treatment, and want to estimate its probability of success ρ?. To this
end they will conduct a clinical trial where they will test their treatment on N individuals, and record
whether they react favorably. This can be modeled as

x1, . . . , xN
iid∼ Bernoulli(ρ?),

where they want to estimate ρ?.

Pharmaceuticals design many treatments. Testing them on humans is difficult and expensive. Hence
they first experiment in-vitro or with animals to find the most effective ones. The particular treatment
that we are studying has already been tested in vitro, mice, rabbits and chimpanzees, and has proven
to be very effective. Hence we expect a priori that ρ? will be closer to 1 than to 0. Thus, a good model
for the prior p(ρ) would be the Beta density

p(ρ) =
Γ(α+ β)

Γ(α)Γ(β)
ρα−1(1− ρ)β−1

with parameters α > β > 1, so that the density is skewed towards 1 (see Figure 6.2 for some intuition).
Using this prior information, the pharmaceutical will use a bayesian approach to estimate ρ?. The
likelihood function is

p(x|ρ) = ρ
∑N

i=1 xi (1− ρ)N−
∑N

i=1 xi = ρ1
Tx (1− ρ)N−1Tx.

Hence

p(ρ|x) =
p(x|ρ)p(ρ)

p(x)
∝ p(x|ρ)p(ρ) =

(
ρ1

Tx (1− ρ)N−1Tx
)( Γ(α+ β)

Γ(α)Γ(β)
ρα−1(1− ρ)β−1

)
∝ ρ1

Tx+α−1 (1− ρ)N−1Tx+β−1,

and so we recognize p(ρ|x) to be the Beta(α′, β′) density with parameters α′ = 1Tx + α and β′ =

N−1Tx+β (here we are omitting the normalization factor Γ(α′+β′)
Γ(α′)Γ(β′) , which we know p(ρ|x) must have,

because it is a density and must integrate to 1). It follows that ρ̂MAP = arg maxρ p(ρ|x) is the point

that maximizes the Beta(α′, β′) density, i.e., its mode: if α′, β′ > 1, this is given by α′−1
α′+β′−2 ; if α′ or

β′ < 1, it is one of the extreme points {0, 1}; if α′ = β′ = 1, then Beta(α′, β′) = Uniform[0, 1].

Definition 6.3 (Conjugate prior). Whenever p(θ) has the same form (but possibly different parameters) as
p(θ|x), we say that p(θ) is a conjugate prior of p(x|θ).
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Figure 6.2: Beta(α, β) densities are good models for prior distributions of proportions (like the probability of success ρ?).
Loosely speaking, the gap between α and β determines where we a priori think ρ? is; the magnitudes of α and β determine how
confident we are. This way the parameters α and β determine our a priori bias and certainty. For instance, in Example 6.2, if
we believe the probability of success ρ to be closer to 1, we can model it as Beta(α, β) with α > β > 1, so that p(ρ) is biased
towards 1. If we are somewhat certain, we can take α = 7 and β = 2. If we are extremely certain, we can choose α and/or β to
be much larger.

Example 6.3. In Example 6.2, p(ρ) =Beta(α, β) is a conjugate prior of p(x|ρ) =Bernoulli(ρ) because
p(ρ|x) =Beta(α′, β′)

6.3 MAP vs MLE: Which is Better?

We now discuss some relations between the MAP estimator and the MLE.

Proposition 6.4. If there is no prior information, the MAP is equal to the MLE.

Proof. Having no prior information is equivalent to having θ ∼Uniform(Θ). In this case p(θ) = 1
|Θ| for every

θ, i.e., p(θ) is a constant. Hence

θ̂MAP := arg max
θ∈Θ

p(θ|x) = arg max
θ∈Θ

p(x|θ) p(θ)︸︷︷︸
constant

= arg max
θ∈Θ

p(x|θ) =: θ̂ML,

where the second equality follows by Proposition 6.3.

The next theorem states that the MAP converges to the MLE as the number of samples N grows.

Theorem 6.1. Let x1, . . . , xN
iid∼ p(x|θ). Then θ̂MAP → θ̂ML as N→∞.
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Proof. Write:

θ̂MAP = arg max
θ∈Θ

p(θ|x)p(θ) = arg max
θ∈Θ

N∏
i=1

p(θ|xi)p(θ) = arg max
θ∈Θ

log

(
N∏

i=1

p(θ|xi)p(θ)

)

= arg max
θ∈Θ

N∑
i=1

log
(
p(θ|xi)p(θ)

)
= arg max

θ∈Θ

1

N︸︷︷︸
constant

N∑
i=1

log
(
p(θ|xi)p(θ)

)

= arg max
θ∈Θ

1

N

N∑
i=1

log p(θ|xi) +
1

N
log p(θ) = arg max

θ∈Θ

1

N

N∑
i=1

log p(θ|xi) +
1

N
log p(θ)︸ ︷︷ ︸
N→∞−−−−→0

−→ arg max
θ∈Θ

1

N

N∑
i=1

log p(θ|xi) = arg max
θ∈Θ

1

N
log

N∏
i=1

p(θ|xi) = arg max
θ∈Θ

1

N︸︷︷︸
constant

p(θ|x)

= arg max
θ∈Θ

p(θ|x) = θ̂ML.

Example 6.4. In Example 6.2, first observe that

p̂ML = arg max
ρ∈[0,1]

p(x|ρ) = arg max
ρ∈[0,1]

ρ1
Tx (1− ρ)N−1Tx =

1

N

N∑
i=1

xi,

where I’ll let you fill in the details of the last equality. On the other hand, since p(ρ|x) = Beta(α′, β′),

var(ρ|x) =
α′β′

(α′ + β′)2(α′ + β′ + 1)
=

(1Tx + α)(N− 1Tx + β)

(��1Tx + α+ N−��1Tx + β)2(��1Tx + α+ N−��1Tx + β + 1)

=
(1Tx + α)(N− 1Tx + β)

(N + α+ β)2(N + α+ β + 1)
−→

≤N︷ ︸︸ ︷
(1Tx)

≤N︷ ︸︸ ︷
(N− 1Tx)

N3
≤ 1

N

N→∞−−−−→ 0.

It follows that

ρ̂MAP = E[p|x] =
α′

α′ + β′
=

1Tx + α

��1Tx + α+ N−��1Tx + β
=

1Tx + α

N + α+ β
−→ 1Tx

N
= ρ̂ML.

Here is an alternative derivation: observe that since α′ = 1Tx + α and β′ = N− 1Tx + β, if ρ? 6= 0, 1,
for large N we will have α′, β′ > 1, whence ρ̂MAP is the mode of the Beta(α′, β′) distribution, i.e.,

p̂MAP =
α′ − 1

α′ + β′ − 2
=

1Tx + α− 1

��1Tx + α+ N−��1Tx + β − 2
=

1Tx + α− 1

N + α+ β − 2
−→ 1Tx

N
= p̂ML.

On the other hand, if ρ? = 0 or 1, then so will ρ̂MAP and ρ̂ML.

Experiments

Experiments are not only good to verify our results. They are also good to build intuition, test theories and
draw conclusions. In this section we will further study Example 6.2 to compare the MAP and the MLE.
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In short, our conclusion will be that if our prior is accurate, the MAP will be better, but if our prior is
inaccurate, the MAP will be worse.

Recall that the treatment in Example 6.2 has already shown great results on other organisms, so we believe
its probability of success on humans ρ? to be closer to 1 than to 0. With this in mind we will use a Beta(7, 2)
as prior, so that the density is skewed towards 1. (see Figure 6.2 to build some intuition).

Next we will generate a random vector x ∈ RN with i.i.d. Bernoulli(ρ?) entries. The ith entry in x simulates
whether the ith patient reacted favorably to the treatment. We showed in Example 6.2 that the posterior
p(ρ|x) = Beta(α′, β′) with α′ = 1Tx + α and β′ = N− 1Tx + β.

Let us now consider two scenarios:

(i) ρ? = 0.7. This would be a case when our prior is correct (Figure 6.3—left). We can see that even with
a few samples (N = 3), our estimate ρ̂MAP = arg maxρ∈[0,1] p(ρ|x) would be very close to ρ?. The code
for this simulation is in Appendix A.

(ii) ρ? = 0.3. This would be a case when our prior is incorrect (Figure 6.3—right). We can see that unless
we have a lot of samples (N large), our estimate ρ̂MAP could be very far from ρ?! In words, the prior is
pulling the posterior towards it. This is one of the dangers of bayesian estimation: the bias induced by
the prior might make it harder to see the truth. What do you think would happen if we use a stronger
prior, like p(ρ) =Beta(100, 16)? How would this affect the posterior p(ρ|x)? Try it out and see; you
only need to change a few lines of code. Do the results match your intuition?

Case (ii) shows one of the risks of bayesian estimation. Now the question is: is it worth it? In other words,
if our prior is correct, do we really have that much to gain? Let us find out by comparing the MAP with the

MLE. Since xi
iid∼ Bernoulli(ρ?), it follows that ρ̂ML =

∑N
i=1 xi has a Binomial(N, ρ?) distribution (scaled

by 1/N). Figure 6.4 shows a comparison of the distributions of θ̂MAP and θ̂ML for different scenarios.

These experiments show that the prior is essentially biasing us towards our beliefs. If our beliefs are correct,
the MAP will be more accurate than the MLE (given the same number of samples N). In contrast, if
our beliefs are incorrect, it will take more samples to correct the posterior, and so the MAP will be more
inaccurate.

ρ? = 0.7 ρ? = 0.3
(Correct prior) (Incorrect prior)

Figure 6.3: Posterior distribution p(ρ|x) in Example 6.2. In expectation, 1Tx = Nρ?, so the expected posterior is distributed
Beta(Nρ? + α,N(1 − ρ?) + β), plotted in solid colors. Dotted lines are the posterior distributions given a particular sample.
The code for this simulation is in Appendix A.
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Figure 6.4: Distribution of the MAP and the MLE for different values of ρ? and N. θ̂MAP ∼ Beta(Nρ? +α,N(1− ρ?) + β) and

θ̂ML ∼ Binomial(N, ρ?). The code for this is in Appendix B.
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A Code for Simulation of Example 6.2

1 clear all; close all; clc; warning('off','all');
2

3 % === Code to simulate the posterior distribution of rho ===
4 % ===== See Example 6.2.
5

6 rho star = 0.7; % True probability of success.
7 alpha = 7; % Parameter of prior distribution.
8 beta = 2; % Parameter of prior distribution.
9 NN = [50,15,3]; % Sample sizes we will try.

10

11 % Create figure.
12 figure(1);
13 axes('Box','on');
14 hold on;
15

16 % Plot expected posterior distribution.
17 rho = 0:0.01:1; % all possible values of rho.
18 color = ['b','r','k']; % For plotting.
19 for n=1:length(NN)
20

21 N = NN(n); % Number of samples.
22 alpha prime = N*rho star + alpha; % Parameter of expected posterior distribution.
23 beta prime = N*(1-rho star) + beta; % Parameter of expected posterior distribution.
24 posterior = betapdf(rho,alpha prime,beta prime); % Expected posterior distribution.
25 plot(rho,posterior,color(n),'LineWidth',4);
26

27 end
28

29 % Legends.
30 legend(['N=',num2str(NN(1))],['N=',num2str(NN(2))],['N=',num2str(NN(3))],...
31 'Interpreter','latex','fontsize',20,'Location','Northwest');
32

33 % Plot posterior distributions for a particular sample [X 1,...X N].
34 for n=1:length(NN)
35

36 N = NN(n); % Number of samples.
37 X = rand([N,1]) < rho star; % Sample.
38 alpha prime = sum(X) + alpha; % Parameter of posterior distribution based on sample.
39 beta prime = N - sum(X) + beta; % Parameter of posterior distribution based on sample.
40 posterior = betapdf(rho,alpha prime,beta prime); % Posterior distribution based on ...

sample.
41 plot(rho,posterior,[color(n),':'],'LineWidth',2);
42

43 end
44

45 % Make figure look sexy.
46 axis tight;
47 ylabel('$\mathsf{p}(\rho | \textbf{x})$','Interpreter','latex','fontsize',20);
48 xlabel('','Interpreter','latex','fontsize',20);
49 set(gca,'XTick',[0,rho star,1],'xticklabel',{'0','\rho*','1'},'fontsize',20);
50 set(gca,'YTick',[],'yticklabel',[]);
51 set(gcf,'PaperUnits','centimeters','PaperSize',[30,10],'PaperPosition',[0,0,30,10]);
52

53 % Save figure.
54 set(gcf, 'renderer','default');
55 figurename = 'MAP.pdf';
56 saveas(gcf,figurename);
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B Code for Comparison of MAP and MLE in Figure 6.4

1 clear all; close all; clc; warning('off','all');
2

3 % === Code to simulate the posterior distribution of rho ===
4 % ===== See Example 6.2 and Figure 6.4.
5

6 rho star = 0.7; % True probability of success.
7 alpha = 7; % Parameter of prior distribution.
8 beta = 2; % Parameter of prior distribution.
9 NN = [50,15,3]; % Sample sizes we will try.

10

11 % Plot distributions of the MAP and the MLE.
12 for n=1:length(NN)
13

14 N = NN(n); % Number of samples.
15

16 % Create figure
17 figure(n);
18 axes('Box','on');
19 hold on;
20

21 % MAP distribution.
22 rho = 0:0.01:1; % all possible values of rho (continuous).
23 alpha prime = N*rho star + alpha; % Parameter of expected posterior distribution.
24 beta prime = N*(1-rho star) + beta; % Parameter of expected posterior distribution.
25 posterior = betapdf(rho,alpha prime,beta prime); % Expected posterior distribution.
26 h1 = plot(rho,posterior,'k','LineWidth',4);
27

28 % MLE distribution.
29 rho = 0:N; % all possible values of rho (discrete).
30 likelihood = binopdf(rho,N,rho star); % Distribution of the MLE.
31 likelihood = likelihood/max(likelihood)*max(posterior);
32 h2 = plot(rho/N,likelihood,'b-o','LineWidth',2);
33

34 % Make figure look sexy.
35 axis tight;
36 ylabel('','Interpreter','latex','fontsize',20);
37 xlabel('','Interpreter','latex','fontsize',20);
38 set(gca,'XTick',[0,rho star,1],'xticklabel',{'0','\rho*','1'},'fontsize',20);
39 set(gca,'YTick',[],'yticklabel',[]);
40 title(['N$ = ',num2str(N),'$'],'Interpreter','latex','fontsize',25);
41 legend({'posterior $\mathsf{p}(\rho | \textbf{x})$',...
42 'likelihood $\mathsf{p}(\textbf{x}|\rho)$'},...
43 'Interpreter','latex','fontsize',20,'Location','Northwest');
44 set(gcf,'PaperUnits','centimeters','PaperSize',[20,15],'PaperPosition',[0,0,20,15]);
45

46 % Save figure.
47 set(gcf, 'renderer','default');
48 figurename = ['MAPvsMLE ',num2str(N),'.pdf'];
49 saveas(gcf,figurename);
50

51 end
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