CS 760: Machine Learning Spring 2024
Topic 2: Review of Linear Algebra

INSTRUCTOR: DANIEL L. PIMENTEL-ALARCON (© COPYRIGHT 2024

DO NOT POLLUTE! AVOID PRINTING, OR PRINT 2-SIDED MULTIPAGE.

2.1 Fundamental Concepts

Linear algebra lies at the heart of machine learning, studying linear equations, mappings, and their repre-
sentations in feature spaces. One of the most elemental vector manipulations are linear combinations, which
essentially comprise scaling and addition.

Definition 2.1 (Linear combination, coefficients). A vector z is a linear combination of vectors {x1,...,Xr}
if it can be written as

R
z = Z:crxr (2.1)
r=1
for some cy,...,cr € R. The scalars {cy,...,cr} are called the coefficients of z with respect to (w.r.t.)

{Xl, oo 7XR}.

Example 2.1. Consider the following vectors in R3:

1 e
x = |—2|, y = |0
T 1

3

2-1
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Then
1 e -3 2e -3+ 2e
z = —3x+2y = -3 |(-2|+2|0| = 6 |+]0] = 6
s 1 =37 2 -3+ 2

is a linear combination of x and y, with coefficients —3 and 2.

Another fundamental concept is linear independence.

Definition 2.2 (Linear independence). A set of vectors {x1,...,xr} is linearly independent if
R
Z X, = 0
r=1
implies ¢, = 0 for every r = 1,...,R. Otherwise we say it is linearly dependent.

Intuitively, a set of vectors is linearly independent if none of them can be written as a linear combination of
the others.

Example 2.2. The following vectors are linearly independent:

1 0 0
X1 = 0 5 X9 = 1 5 X3 = 0 5
0 0 1

because we cannot write either of them as a linear combination of the others. In contrast, the following
vectors are linearly dependent:

b) 1 0
Y1 = 5 9 y2 = 1 9 y3 = 0 9
2 0 1

because we can write y; as a linear combination of y, and y5, namely, y; = by, + 2y;.

2.2 Matrices

Matrices are very handy structures to arrange and manipulate vectors.

Example 2.3. We can arrange the vectors in the Example 2.2 in the following matrices:

1 00 5 95 2
X =101 0f, Y=1|1120
0 0 1 0 0 1
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2.2.1 Review of Basic Matrix Operations

e Matrix Multiplication. Given matrices A € R™*X and B € RX*, their product, denoted by AB,
is another matrix of size m x n whose (i,j)*® entry is given by:

k
[ABJ; = > AyBy;.
{=1

Intuitively, the (i,j)!" entry of AB is given by the multiplication of the i*" row of A and the j*! column

of B. For example, if

2

41, (2.2)
6

Then:

_[@-1+2:3+3.5) (1-2+2:4+3.6)] _ [22 28
s - | |- %)

(4-145-346-5) (4-2+5-4+6-6) 49 64

e Scalar Multiplication Given a scalar ¢ and a matrix A € R™*? their product, denoted by cA, is

an m x n matrix whose (i,j)'" entry is given by c times the (i,j)*® entry of A. For example, with A as
n (2.2),and c =7,

7 14 21
A =TA = [28 35 42]’

e Transposition. The transpose of a matrix A € R™*" denoted by AT, is an n X m matrix whose
(i,j)t" entry is given by the (j,1)*" entry of A. Intuitively, transposing a matrix is like flipping its rows
and columns along the diagonal. For example, with A as in (2.2),

1 4
AT = |2 5
3 6

e Trace. Given a squared matrix X € R™*™  its trace, denoted by tr(X) is the sum of its diagonal
entries:

tI’(X) = Z Xi.

For example, with X as in Example 2.3, tr(X) = 3.

e Identity Matrix. The identity matrix of size m x m, denoted by I, is a squared matrix whose
diagonal entries are all ones, and off-diagonal entries are all zeros. For example, the 3 x 3 identity
matrix is

100
I, = [0 1 0
00 1

Whenever there is no possible confusion about the size of the identity matrix, people often drop the m
subindex, and simply denote it as I.
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e Inverse. Given a squared matrix X € R™ ™ its inverse, denoted by X! is a matrix such that
XX ! = X7'X =1 For example, with X as in Example 2.3, X! = X. As another example,

consider
1 1 1
X =11 2 4
1 3 9
Then
3 -3 1
Xt =1]-25 4 —-15
0.5 -1 0.5

You can verify that XX ! = X7'X = I. Here is a special trick to invert 2 x 2 matrices:

a b]7' 1 [d -b
c d " ad—bec|-c¢ al’

Of course, this requires that ad — be # 0.

e Hadamard Product. Given two matrices A,B € R™*"  their Hadamard product (aka point-wise

product) is a matrix of size m x n, denoted as A ® B, whose (i,j)*® entry is given by the product of

the (i,j) entries of A and B, i.e.,

For example, with A, B as in (2.2),

T 123 L35 16 15
AOB [456]6{246}[8 20 36}

e Vector Operations. Notice that vectors are 1-column matrices, so all matrix operators that apply
to non-squared matrices also apply to vectors. For instance, with the same setup as in Example 2.2,

0
x;x; = [1 0 0] 1] = 0.
0

Notice that x]xs # x1X:

In the particular case of vectors, this is often called the ¢5-norm or Fuclidean norm, and is denoted by
Ix|l2, or simply ||x||. Norms are important because they essentially quantify the size of a matrix or
vector. Just as there are several ways to quantify the size of a person (e.g., age, height, weight), there
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are also several ways to quantify the size of a matrix or vector, for which we can use different norms.
Another example is the ¢1-norm, which for matrices is defined as:

Al = mjaxz | A,
i=1

and for vectors is defined as
Il = > Ixl,
J

also known as the taxi-cab or Manhattan norm. Intuitively, the 5-norm measures the point-to-point
distance, while the £;-norm measures the taxi-cab distance. For example, for the same vector x = [4 3]T,
here are two different notions to quantify its size:

%[l = v42+3%=5 Ix[le = [4]+ 3] =7

o

o
.
NP Il =7

%

The norm ||x|| of a vector x is essentially its size. Norms are also useful because they allow us to measure
distance between vectors (through their difference). For example, consider the following images:

and vectorize them to produce vectors x,y,z. We want to do face clustering, i.e., we want to know
which images correspond to the same person. If ||x —y]|| is small (i.e., x is similar to y), it is reasonable
to conclude that the first two images correspond to the same person. If ||x —z|| is large (i.e., x is very
different from z), it is reasonable to conclude that the first and second images corresponds to different
persons.

Norms satisfy the so-called triangle inequality: |x +y| < ||x|| + ||y||. This allows you to draw useful
conclusions. For example, knowing that ||x —y|| is small and that ||x —z|| is large allows us to conclude
that ||y — z|| is also large. Intuitively, this allows us to conclude that if x,y correspond to the same
person, and x and z corresponds to different persons, then y and z also correspond to different persons.
In other words, nothing weird will happen.

Inner Product. Given two matrices A, B € R™*" their inner product is defined as:

(A,B) = tr(ATB).
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For example, with A as in (2.2),

§ LAy oy o, 17 22 27
(A, A) = tr(ATA) = (|2 5| o o] =t[]|22 20 36| ] = oL
36 27 36 45

Notice that for vectors x,y € RP, x"y will always be a scalar, so we can drop the trace, and simply
write (x,y) = x"y. For example, with the same setup as in Example 2.2:

0
(x1,X2) = xIxQ = [1 0 O] 1| =0,

_O_

=
(yi:¥2) = yiy. = [> 5 2] |1| = 10.

0

Inner products are of particular importance because they measure the similarity between matrices and
vectors. In particular, recall from your kinder garden classes that the angle 6 between two vectors is

given by:
cosh = XY
[l
More generally, the larger the inner product between two objects (in absolute value), the more similar
they are.

2.2.2 Why do I care about Matrices?

Matrix operators are useful because they allow us to write otherwise complex burdensome operations in
simple and concise matrix form.

Example 2.4. With the same settings as in Examples 2.2 and 2.3, we can write linear combinations
using a simple matrix multiplication. For instance, instead of writing

5 1 0 0
y1 = 5 = 5 O +5 ]. +2 0 = 5X1—|—5X2—|—2X3,
2 0 0 1

we can let c =[5 5 2]T be y,’s coefficient vector, and equivalently write in simpler form:

5 1 0 0][5
y, = |5 = [0 1 0o |5] = X"c.
2 00 1|2

Similar matrix expressions will be ubiquitous throughout this course, so you should start getting familiar
and feeling comfortable using matrix operations.

2.3 Subspaces

Subspaces are essentially high-dimensional lines. A 1-dimensional subspace is a line, a 2-dimensional sub-
spaces is a plane, and so on. Subspaces are useful because data often lies near subspaces.
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Example 2.5. The following data lie near a 1-dimensional subspace (line):

glucose

) exercise
weight

In higher dimensions subspaces may be harder to visualize, so you will have to use imagination to decide
how a higher-dimensional subspace looks. Luckily, we have a precise and formal mathematical way to define
them:

Definition 2.3 (Subspace). A subset U C RP is a subspace if for every a,b € R and every u,v € U,
au+ bv € U.

Definition 2.4 (Span). span[uy, ..., ug] is the set of all linear combinations of {us,...,ug}. More formally,

R
spanuy,...,ug] := {XERD g x:Zcrur for some cl,...,cRER}.

r=1

For any vectors uy, ..., ug € RP, span[uy,...,ug] is a subspace. For example, here is a subspace U (plane)
spanned by two vectors, u; and us:

Definition 2.5 (Basis). A set of linearly independent vectors {uy, ..., ur} is a basis of a subspace U if each
v € U can be written as

R
vV = E cruy
r=1

for a unique set of coefficients {cq,...,cr}.
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Definition 2.6 (Orthogonal). A collection of vectors {x1,...,xr} is orthogonal if (xi,x;) = 0 for every
i ]
If [|x|| = 1, we say x is a unit vector, or that it is normalized. Similarly, a collection of normalized, orthogonal

vectors is called orthonormal. There is a tight relation between inner products and norms. The following is
one of the most important and useful inequalities that describe this relationship.

Proposition 2.1 (Cauchy-Schwartz inequality). For every x,y € RP,

[y < lxlly -

Furthermore, if y # 0, then equality holds if and only if x = ay for some a € R.

2.4 Projections

In words, the projection X of a vector x onto a subspace U is the vector in U that is closest to x:

More formally,

Definition 2.7 (Projection). The projection of x € RP onto subspace U is the vector % € U satisfying

Ix =% < ||lx—u for every u € U.

Notice that if x € U, then % = x. The following proposition tells us exactly how to compute projections.

Proposition 2.2. Let {uj,...,ur} be an orthonormal basis of U. The projection of x € RP onto U is
given by

R
X = Z(X, u)u,.
r=1

In other words, the coefficient of x w.r.t. u, is given by (x,u,).
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Furthermore, the following proposition tells us that we can compute projections very efficiently: just using
a simple matrix multiplication! This makes projections very attractive in practice. For example, as we saw
before, data often lies near subspaces. We can measure how close using the norm of the residual x — X.

Proposition 2.3 (Projector operator). Let U € RP*R be a basis of U. The projection operator
Py : RP — U that maps any vector x € RP to its projection % € U is given by:

Py = UUTU)'U".

Notice that if U is orthonormal, then Py = UUT.

Proof. Since % € U, that means we can write X as Uc for some ¢ € R®. We thus want to find the c that
minimizes:

|x —Uc|? = (x—Uc)"(x—Uec) = x' —2¢"U'x+c"UUc.

Since this is convex in ¢, we can use elemental optimization to find the desired minimizer, i.e., we will take
derivative w.r.t. ¢, set to zero and solve for c. To learn more about how to take derivatives w.r.t. vectors and
matrices see Old and new matriz algebra useful for statistics by Thomas P. Minka. The derivative w.r.t. c is
given by:

—2U"x +2U Ue.
Setting to zero and solving for ¢ we obtain:

¢ := argmin ||x — Uc|? = (UTU)"'Ux,
ceRR

where we know U U is invertible because U is a basis by assumption, so its columns are linearly independent.
It follows that

% = Ue = UUTU) U x,

—_—
Py

as claimed. If U is orthonormal, then UTU = I, and hence Py simplifies to UU'. Notice that & are the
coefficients of X w.r.t. the basis U. O

2.5 Gram-Schmidt Orthogonalization

Orthonormal bases have very nice and useful properties. For example, in Proposition 2.3, if the basis U is
orthonormal, then the projection operator is simplified into UUT, which requires much less computations
than U(UTU)*IUT. The following procedure tells us exactly how to transform an arbitrary basis into an
orthonormal basis.
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Proposition 2.4 (Gram-Schmidt procedure). Let {uy,...,ur} be a basis of U. Let

/

{ ug r=1,
v, = B
' Uy _er(:i<uravk>vk 1"22,...,1:{,

vi = vi/[[vill.
Then {vy,...,vR} are an orthonormal basis of U.
Proof. We know from Proposition 2.2 that Zf(:l(uhvk)Vk is the projection of u, onto span[vy,...,vy_1].
This implies v, is the orthogonal residual of u, onto span|vy,...,v,_1], and hence it is orthogonal to
{v1,...,vi_1}, as desired. v, is simply the normalized version of v/. O

2.6 Conclusions

These notes review several fundamental concepts of linear algebra that lie at the heart of machine learning,
and will be crucial in every topic to be studied in this course.
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