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In memory of my friend John Brady, who taught me, among many other things, how to do figures right.

DO NOT POLLUTE! AVOID PRINTING, OR PRINT 2-SIDED MULTIPAGE.

5.1 Introduction

One of the most elemental problems in machine learning can be summarized as predicting the value of a
response y as a function of other features x1, . . . , xD. For example:

• Predicting my glucose level (response) as a function of my height, weight, age, and gender (features).

• Predicting stock prices (response) as a function of the market state (features).

• Predicting the activation level of a gene that determines a disease, like cancer (response) as a function
of other genes’ activation levels (features); this is often known as genomics wide association studies
(GWAS).

• Predicting magnitude of solar flares (response) as a function of solar images (features).

The main idea behind linear regression is to approximate y as a linear combination of x1, . . . , xD, i.e.

y ≈ θ0 + θ1x1 + θ2x2 + · · ·+ θDxD, (5.1)

where θ0 is essentially an offset, and θ1, θ2, . . . , θD are the weights of each feature. For instance, in our
glucose example, (5.1) is essentially saying:

glucose level ≈ θ0 + θ1height + θ2weight + θ3age + θ4gender.

Notice that by letting x = [ 1 x1 x2 · · · xD]
T and θ = [θ0 θ1 θ2 · · · θD]

T we can rewrite (5.1) in vector
form as

y ≈ xTθ. (5.2)

The goal is to determine the weights vector θ that best explains y as a function of x. Effectively, this equates
to finding the function f in the family of functions of the form f(x) = xTθ that best predicts y.

5.2 Learning θ by MSE Minimization

The main idea is to find the vector θ that best explains the training labels y1, y2, . . . , yN as a function of the
training feature vectors x1,x2, . . . ,xN. There are several ways to interpret what it means to best explain.
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One of the most common ones is as minimizing the mean squared error (MSE), i.e.,

θ̂ = argmin
θ∈RD+1

1

N

N∑
i=1

(yi − xT
i θ)

2. (5.3)

Intuitively, θ̂ is the line that best explains the yi’s as function of the xi’s. This is illustrated in the following
figure, where each point represents a pair (xi, yi), and ϵi represents the error on the ith sample:

To solve (5.3), rewrite it as

θ̂ = argmin
θ∈RD+1

∥y −Xθ∥22, (5.4)

where y = [y1 y2 · · · yN]
T, X = [x1 x2 · · · xN]

T, and the 1/N factor is removed because it does not
affect the minimization. Then notice that:

∥y −Xθ∥22 = (y −Xθ)T(y −Xθ)

= yTy − yTXθ − θTXTy + θTXTXθ

= yTy − 2θTXTy + θTXTXθ.

To obtain the derivative with respect to θ (to learn more about how to take derivatives w.r.t. vectors
and matrices see Old and new matrix algebra useful for statistics by Thomas P. Minka), first compute the
differential:

dtr
(
yTy − 2θTXTy + θTXTXθ

)
= −2tr

(
(dθ)TXTy

)
+ tr

(
(dθ)TXTXθ

)
+ tr

(
θTXTX(dθ)

)
= −2tr

(
(dθ)TXTy

)
+ 2tr

(
(dθ)TXTXθ

)
= 2tr

(
(dθ)T(XTXθ −XTy)

)
.

It follows that

d

dθ
= 2XTXθ − 2XTy.

Setting this derivative to zero and solving for θ we conclude that the solution to (5.3) is

θ̂ = (XTX)−1XTy, (5.5)

which is essentially the coefficient of the projection of y onto span{X}.
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5.3 Learning θ by Likelihood Maximization

A Note on Likelihood

Recall that a probability distribution P(y|θ) determines the frequency with which that a random variable y
takes each value, given some parameter θ. For example, if y ∼ Bernoulli(θ), with θ = 1/2, then the probability
that y takes the value 1 is P(y = 1|θ) = θ = 1/2.

Conversely, the likelihood P(y|θ) determines the probability that a parameter θ was the one that generated
a sample y. We emphasize this distinction using y instead of y, to indicate that y is already known, i.e.,
observed data that has already taken a specific value. Under the same Bernoulli example, if we observe
y = 1, then the likelihood of the parameter θ is P(y = 1|θ) = θ.

The probability and the likelihood may look a lot alike. The difference is very subtle, and mainly conceptually:
the probability P(y|θ) is a function where y is the variable, and θ is fixed. In contrast, the likelihood P(y|θ)
is a function where θ is the variable, and y is fixed. We use P(y|θ) when we know θ and want to guess
y; we use P(y|θ) when we have already observed data with the specific value y, and we want to guess the
parameter θ that generated it.

Example 5.1. Suppose y1, . . . , y6 are independently and identically distributed (i.i.d.) according to a
Bernoulli(1/4) distribution. Then the probability that y1 = y2 = y3 = 1, and y4 = y5 = y6 = 0 is:

P(y1 = y2 = y3 = 1, y4 = y5 = y6 = 0|θ) =

3∏
i=1

P(yi = 1|θ) ·
6∏

i=4

P(yi = 0|θ)

= θ3(1− θ)3 = (1/4)3 (3/4)3.

Instead, suppose that we observe y1 = y2 = y3 = 1, and y4 = y5 = y6 = 0. Then the likelihood of θ
under this sample is:

P(y1 = y2 = y3 = 1, y4 = y5 = y6 = 0|θ) =

3∏
i=1

P(yi = 1|θ) ·
6∏

i=4

P(yi = 0|θ)

= θ3(1− θ)3.

Based on this sample, which would be your intuitive best guess at the value of θ? Is this the same value
that maximizes the likelihood P(y1, . . . , y6|θ)?

Likelihood in Linear Regression

Recall that our main goal is to find the vector θ that best explains the training pairs {xi, yi}Ni=1. Another
common interpretation of best explaining is as maximizing the likelihood of the sample, under the probabilistic
model

yi = xT
i θ

⋆ + ϵi for every i, (5.6)

where ϵi
iid∼ N (0, σ2) models a random error, and θ⋆ denotes the unknown true parameter that would

perfectly describe y in terms of x. Our goal is to estimate θ⋆. Letting again y = [y1 y2 · · · yN]
T and

X = [x1 x2 · · · xN]
T, and defining ϵ = [ϵ1 ϵ2 · · · ϵN]

T, we can rewrite (5.6) as:

y = Xθ⋆ + ϵ. (5.7)
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It follows that y ∼ N (Xθ⋆, σ2I); make sure to know why. Then the likelihood of our sample is

P(y,X|θ, σ) =
1

√
2πσ2

N
e−

1
2σ2 (y−Xθ)T(y−Xθ),

and our goal is to find the parameter θ that maximizes this likelihood, i.e.,

θ̂ = argmax
θ∈RD+1

P(y,X|θ, σ) (5.8)

= argmax
θ∈RD+1

1
√
2πσ2

N
e−

1
2σ2 (y−Xθ)T(y−Xθ)

= argmax
θ∈RD+1

−(y −Xθ)T(y −Xθ)

= argmin
θ∈RD+1

∥y −Xθ∥22,

which we recognize as the same problem as (5.4). It follows that the solution to (5.8) is given by (5.5).
In other words, the maximum likelihood estimator (MLE) is the same as the minimizer of the MSE from
Section 5.2. We point out that in general, different optimality criteria (e.g., minimizing MSE and maximizing
likelihood) may produce different optimal parameters.

5.4 Confidence

Recall that our ultimate goal is to predict y as a function of x. At this point we have identified the line
determined by θ̂ that best explains the training labels y as a function of the training features X. Given a
new x, the linear prediction of its corresponding y is given by

ŷ = xTθ̂ = xT(XTX)−1XTy.

The next question we should be asking is whether we can trust our prediction ŷ. To discover this, observe
that under the probabilistic model in (5.7) (make sure you understand the difference between the estimator
ŷ and the estimate ŷ),

ŷ ∼ N (xTθ⋆, σ2xT(XTX)−1x).

In words, this means that ŷ is a Normal random variable centered around the true y⋆ := xTθ⋆, and has
variance σ2xT(XTX)−1x. Hence, the probability that ŷ is τ -away from the true y⋆ is

P(|ŷ − y⋆| > τ) = 2 ΦN
(
τ
∣∣ 0, σ2xT(XTX)−1x

)
,

where ΦN ( · | µ, ν) is the tail function of the N (µ, ν) distribution:
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Conversely, given a desired significance level α (typically set to 0.05), we can find a threshold

τ = Φ−1
N

(
α/2

∣∣ 0, σ2xT(XTX)−1x
)

such that P(|ŷ − y⋆| ≤ τ) = 1− α:

Equivalently, we conclude that with probability 1 − α (typically set to 0.95), the true (but unknown) y⋆ is
in the confidence interval (ŷ − τ, ŷ + τ):

5.5 Learning Significant Features

Another question we may ask is which features are relevant, and which are not. This can be determined
by the coefficients in θ⋆. If θ⋆j = 0, we can conclude that the jth feature is irrelevant, and if θ⋆j ̸= 0 we can

conclude that the jth feature is significant. Unfortunately, we do not know θ⋆. However, we do know that
its MLE:

θ̂ ∼ N (θ⋆, σ2(XTX)−1).

Letting ν2j denote the (j, j)th entry in the covariance matrix σ2(XTX)−1, we can pose our question as a
hypothesis test:

H0 : θ̂j ∼ N (θ⋆j , ν
2
j ), θ⋆j = 0 ⇒ jth feature is irrelevant,

H1 : θ̂j ∼ N (θ⋆j , ν
2
j ), θ⋆j ̸= 0 ⇒ jth feature is significant.

Here our goal is to decide between H0 and H1. If your hunch is to simply pick which ever is more likely,
then your intuition is correct. That is the main idea of the likelihood ratio test (LRT):

P(θ̂j|θ⋆j ̸= 0)

P(θ̂j|θ⋆j = 0)

H1

≷
H0

1. (5.9)
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Here P(θ̂j|θ⋆j ̸= 0) denotes the likelihood of θ̂j under H1, and similarly P(θ̂j|θ⋆j = 0) denotes the likelihood of

θ̂j under H0. In words, (5.9) decides H1 if the likelihood ratio Λ(θ̂j) :=
P(θ̂j|θ⋆

j ̸=0)

P(θ̂j|θ⋆
j ̸=0)

is larger than 1 (meaning

the likelihood under H1 is larger than under H0), and decides H0 otherwise. However, since we do not know
the specific value of θ⋆j under H1, we cannot compute (5.9) directly. Instead we have to use a generalized
likelihood ratio test (GLRT):

max
θ⋆
j ̸=0

P(θ̂j|θ⋆j )

P(θ̂j|θ⋆j = 0)

H1

≷
H0

τ, (5.10)

where τ can be chosen to bound the probability of a certain type of error (e.g., deciding H1 when H0 is true,
often called Type 1 error) or guarantee the probability of a correct decision (e.g., correctly rejecting H0).

The main idea behind (5.10) is to substitute θ⋆j with its MLE, which we already know from before to be θ̂j.
Then our test becomes:

Λ(θ̂j) =
P(θ̂j|θ⋆j = θ̂j)

P(θ̂j|θ⋆j = 0)
= �

��
1√
2πνj

������: 1

e
− 1

2

(
θ̂j−θ̂j

νj

)2

�
��
1√
2πνj

e
− 1

2

(
θ̂j−0

νj

)2
= e

θ̂2j

2ν2
j

H1

≷
H0

τ.

Taking log and with minor algebra manipulations we can further simplify our test into:( θ̂j
νj

)2 H1

≷
H0

2 log τ.

Under H0, θ̂j ∼ N (0, ν2j ), so θ̂j/νj ∼ N (0, 1), which implies (θ̂j/νj)2 ∼ χ2. Given a desired significance level α
(probability of deciding H1 given that H0 is true, typically set to 0.05), we can select τ as:

τ = e
1
2Φ

−1
χ (α),

where Φχ is the tail function of the χ2 distribution:

With this, our test further simplifies into:

( θ̂j
νj

)2 H1

≷
H0

Φ−1
χ (α) (5.11)
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In words, (5.11) says: decide H1 if θ̂2j > ν2j Φ
−1
χ (α), and decide H0 otherwise, which matches our intuition,

essentially saying: if |θ̂j| is large enough, conclude that θ⋆j ̸= 0, and that the jth feature is significant;

conversely, if |θ̂j| is too small, conclude that θ⋆j = 0, and that the jth feature is irrelevant:

Finally, given an instance of the test statistic (θ̂j/νj)2, its p-value (indicating the probability of observing a
larger test statistic under H0) is

Φχ

( θ̂2j
ν2j

)
.

5.6 Linear Regression Recipe

To summarize, here is how we would use linear regression in a typical scenario:

• Collect labels y ∈ RN and features X ∈ RN×D from N samples.

• Compute θ̂ = (XTX)−1XTy.

• Given a new sample x, predict ŷ = xTθ̂ = xT(XTX)−1XTy.

• Given a significance level α (typically set to 0.05), we know that with probability 1−α, the true y⋆ lies
in the confidence interval (ŷ− τ, ŷ + τ), where τ = Φ−1

N
(

α/2
∣∣ 0, σ2xT(XTX)−1x

)
, and ΦN ( · | µ, ν) is

the tail function of the N (µ, ν) distribution.

• With p-value Φχ(θ̂
2
j/ν2

j ), conclude that the jth feature is significant if θ̂2j > ν2j Φ
−1
χ (α), and decide it is

irrelevant otherwise; here ν2j is the (j, j)th entry in cov(θ̂) = σ2(XTX)−1. Here Φχ is the tail function

of the χ2 distribution.
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5.7 Estimating σ

Notice that our confidence interval and test both depend on σ, which in general may be unknown. To
estimate it, recall that by definition, y −Xθ⋆ ∼ N (0, σ2I). Then

σ̂ := argmax
σ∈R

P(y,X|θ⋆, σ)

= argmax
σ∈R

1
√
2πσ2

N
e−

1
2σ2 (y−Xθ⋆)T(y−Xθ⋆)

= argmax
σ∈R

−N

2
log(2πσ2)− 1

2σ2
(y −Xθ⋆)T(y −Xθ⋆).

Taking derivative we have:

d

dσ
logP(y,X|θ⋆, σ) = −N

σ
+

1

σ3
(y −Xθ⋆)T(y −Xθ⋆).

Setting to zero and solving for σ2 we conclude:

σ̂2 =
1

N
(y −Xθ⋆)T(y −Xθ⋆) =

1

N

N∑
i=1

(yi − xT
i θ

⋆)2, (5.12)

which is the classic MLE of σ2 for the i.i.d. N (0, σ2) random variables ϵi = yi −xT
i θ

⋆. Notice, however, that
(5.12) depends on θ⋆, which we do not know and had to estimate. Luckily, the following theorem shows us
that the MLE of a function is the function of the MLE:

Theorem 5.1 (Invariance of the MLE). Let ϵ1, . . . , ϵN
iid∼ P(ϵ|θ⋆). Let σ⋆ = g(θ⋆) for some surjective

(a.k.a. onto) function g : B ↠ Γ. Then the MLE of σ⋆, defined as

σ̂ := argmax
σ∈Γ

(
max

θ∈g−1(σ)

N∏
i=1

P(ϵi,θ)
)

is given by σ̂ = g(θ̂), where

θ̂ := g
(
argmax

θ∈B

N∏
i=1

P(ϵi|θ)
)

is the MLE of θ⋆. Here g−1 denotes the inverse image of g, i.e., g−1(σ) = {θ ∈ B : g(θ) = σ}.

Proof. Since g is onto, even if g is not injective (a.k.a. one-to-one), the sets {g−1(σ)}σ∈Γ form a partition of
B:
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Therefore, ⋃
σ∈Γ

g−1(σ) = B,

which in turns implies

max
σ∈Γ

(
max

θ∈g−1(σ)

N∏
i=1

P(ϵi|θ)
)

= max
θ∈B

N∏
i=1

P(ϵi|θ).

It follows directly that the MLE of σ is obtained by replacing θ⋆ with θ̂ in (5.12), i.e.:

σ̂2 =
1

N
(y −Xθ̂)T(y −Xθ̂) =

1

N

N∑
i=1

(yi − xT
i θ̂)

2,
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