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6.1 Introduction

Arguably the simplest classification task that we can teach a computer is to distinguish between two classes.
For example:

1. Does this image contain a dog or a cat?
2. Is this person healthy or diabetic?

3. Would this individual survive a disaster?

Logistic regression is one of the most elemental yet powerful techniques for this purpose. The main idea is
to compute the likelihood that a sample (e.g., a person) belongs to each class, based on its information and
the information of previous (training) samples, and then choose the most likely class.

6.2 Setup

Suppose you want to determine whether you would have survived the Titanic sinking, based on certain
information (features) about you, like age, gender, height, weight, etc. Let x € RP denote the feature vector
containing this information, which may look like this:

age
gender

x = | height | (6.1)
weight

Here D denotes the number of features. Similarly, let y be the random variable indicating whether you
survive (y = 1) or not (y = 0). Hence we can rephrase our goal as determining whether y = 0 or y = 1 based
on x. Mathematically, we want to find a function f such that

y = f(x).
Perhaps the most natural way to achieve this is to let f be of the form:
_ [ 1 ifP(y =1]x) > P(y = 0[x),
1) = { 0 otherwise. (6.2)

6-1
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In words, (6.2) is simply saying: decide y = 1 if the probability of y being 1 (based on x) is larger than the
probability of y being 0, and decide y = 0 otherwise. We can rewrite (6.2) as follows:

e Ply=1|x)
) = 1if 5= > 1
0 otherwise.

P(y=1[x)
The term Bly=0lx)

P(y = 0|x) is more likely, and we can decide accordingly. Hence, our goal is to determine what are the odds
based on x. Arguably, the simplest, most natural approach is to model the odds as a linear combination of
the entries in x, i.e.,

is often known as the odds. If we know the odds, we know whether P(y = 1|x) or

Py =1|x

PE‘Z — lei = 6o+ 01x1 + Oax2 + -+ - + Opxp. (63)
Redefining x = [1 x; X --- xp|T and letting @ = [6y 6, 6 --- Op]T we can rewrite (6.3) as 6'x.
The problem with (6.3) is that 583}3 > 0, while 8'x € R (i.e., 8'x could be negative). To avoid this

discrepancy, rather than modeling the odds as a linear combination of x as in (6.3), logistic regression instead
uses the so-called log-odds, obtained by applying the log function to the odds:

Ply =1[x)\ _ T«
log (P(y:()x)) = 0 x. (6.4)

It is from this idea that logistic regression obtains its name. Notice that in (6.4), both the log-odds and 0"x
are real numbers, so there is no longer any discrepancy. Letting p := P(y = 1|x) we can rewrite (6.4) as

and solving for p we have:

p = ¢ —p(e”),
p(l+ex) = &',
e0'x
PT e
which we can further simplify to:
e . I DR U N 65
1 + eBTx 1;37::)( eelrx + Z::: eej:rx + 1 1 + e_eTx
To summarize, logistic regression is modeling
Ply=1lx) = ———. (6.6)
1+e 9%

The right hand side of (6.6) is often called logistic function. It follows that we can rewrite our decision
function (6.2) as:

. 1 1
flx) = L ifn > - s
0 otherwise.

Moreover, since P(y = 1|x) + P(y = 0|x) = 1, we can further simplify this as
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1 if ——>1
x) — I4e0'x 7 27 6.7
/) { 0 otherwise. (6.7)

This means that if you want to know whether you would have survived, all you have to do is plug your
feature vector x in (6.7), and decide accordingly. The catch here is that (6.7) depends on 6, which you do
not know a priori. So, which 0 should you use? The answer is: you have to learn it.

6.3 Learning ¢

Logistic regression uses (6.7) to decide whether y = 0 or y = 1 based on x. However, our function f in (6.7)
depends on 6, which is unknown a priori. To learn 8 we use training data, meaning a collection of feature
vectors X1, Xo, ..., XN and their corresponding labels y1,yo,...,yn. In our example, this would mean feature
vectors as in (6.1) from N people, and their labels indicating whether they survived or not.

In words, our goal is to find the parameter 8 that best explains our training samples. By doing so we are
effectively finding the best target function f in the family of functions that have the form in (6.7). In this
case, by best we mean the function f that maximizes the likelihood of our sample. In supervised learning
jargon, the likelihood is the cost function that we are trying to optimize. Intuitively, this likelihood is the
chance that our observed samples are correctly predicted by f, i.e., the probability that y; = f(x;), for every
i=1,...,N.

6.4 Likelihood

Recall that a probability distribution P(y|@) determines the frequency with which that a random variable y
takes each value, given some parameter 6. For example, if y ~ Bernoulli(#), with § = 1/2, then the probability
that y takes the value 1 is P(y = 1|6) = 0 = 1/2.

Conversely, the likelihood P(y|@) determines the probability that a parameter 6 was the one that generated
a sample y. We emphasize this distinction using y instead of y, to indicate that y is already known, i.e.,
observed data that has already taken a specific value. Under the same Bernoulli example, if we observe
y = 1, then the likelihood of the parameter 0 is P(y = 1|0) = 6.

The probability and the likelihood may look a lot alike. The difference is very subtle, and mainly conceptually:
the probability P(y|@) is a function where y is the variable, and 0 is fixed. In contrast, the likelihood P(y|8)
is a function where 0 is the variable, and y is fixed. We use P(y|@) when we know 8 and want to guess
y; we use P(y|@) when we have already observed data with the specific value y, and we want to guess the
parameter @ that generated it.

Example 6.1. Suppose y1,...,ys are independently and identically distributed (i.i.d.) according to a
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Bernoulli(1/4) distribution. Then the probability that y; = y2 = y3 =1, and ys = y5 = y = 0 is:

::]w

6
Plyi1=y2=ys =1L ys=ys = ye = 0[0) = yi =100) - [[Ps = 01)
i=4

10 = () (3fa)°.

Instead, suppose that we observe y; = yo = y3 = 1, and y4 = y5 = y¢ = 0. Then the likelihood of 6
under this sample is:

=40

w
—~ =

Plyi=y2=y3=1Lyas=ys =ys =0[0) =

.

w
— =

6
P(yi = 110) - [ [ P(vi = 016)
i=4

1-6)3

1

=40

Based on this sample, which would be your intuitive best guess at the value of 87 Is this the same value
that maximizes the likelihood P(y1,...,y¢|0)?

6.5 Maximum Likelihood

Back to logistic regression, we can model our training data yi,...,yn as i.i.d. realizations of a Bernoulli(p)
random variable, where p = ﬁ A little thought shows that the likelihood of a Bernoulli(p) random
=0T

variable can be written as:

P(ylp) = p’(1—p)'™.
Make sure you understand why this is true. By independence, the likelihood of our training sample is:

N

N
P(}’Ia---7}’N|p> - Hp(yllp) = pri(l_p)l_)’i.
i=1

i=1

Since p is in turn a function of the unknown parameter @ and the known data x1,...,XyN, we can rewrite
this likelihood as

N 1 Yi 1 17Yi
P(y1,...,yN[X1,...,%XN,0) = H(W) (1—1_’_6_9Txi>

Yi 1 1-y;
, 6.8
() () o)

where the last step follows by similar manipulations as in (6.5). To ease our notation we will use P(y|X, 0)
as shorthand for P(yq,...,y~|X1,...,%XN,60). Our goal is to find the 6 that maximizes this likelihood.
Maximizing products as in (6.8) can be difficult (as you know from the chain rule of derivatives), so to
simplify this maximization, we will use a common trick: apply log, so that products transform into sums,
which are easily maximized (because of the linearity of derivatives: the derivative of a sum is the sum of
derivatives). We know we can do this because PP is positive (so we can apply log), and log is monotonically
increasing, implying that

I
=1

argmax P(y|X,0) = argmax log [P(y|X,6)].
eeRD+l 96RD+1
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So instead of maximizing the likelihood directly, we can equivalently maximize the so-called log-likelihood:

£(0) : = log [IP’(y|X,0)]

N 1 Vi 1 1—yi
log Ll:[l (1 + e"Txi) (1 + ef'xi ) ]
N 1 Vi 1 1-yi
— [(1 +e9TXi) (1 +€9Txi> ]

1 1
— )+ -y)log(——— ], 6.9
679 x;) ( Y)0g<1+69 x;):| ( )

which is easier to maximize than (6.8) because it contains a sum, rather than a product. Sadly, (6.9) is still
complex enough that it cannot be maximized with our calculus 101 recipe (take derivative, set to zero, and
solve for the optimizer). Instead we can use something like gradient ascent, which can be summarized as
follows:

Il Il
M= Il
5

= QR
2

7 N

—

_|_

e Find an expression for the gradient of the function you want to optimize. In our case it would be:
N
de(0) 1
Vi) = =0 = ;:1 <Yi - 1+6_on> X;.
e Initialize 8y with your best guess.

e Repeat until convergence:

6t+1 = 0t + ntVK(B) 9:0,

where 7 is the step-size parameter at time t:

V(1)

————
6, Mg, Mg,

In general, gradient descent may get stuck in a local optima of the objective function its trying to optimize.
Fortunately, the objective function in logistic regression is a log-likelihood from the exponential family, which
as the next theorem shows, is concave.
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Theorem 6.1 (Concavity of the log-likelihood). The log-likelihood function

N
1 1
08) = E yi log (_ Tx«) + (1 —y;i)log (Tx«>
— 1+e 0= 1+ef =

is concave in 6.

Proof. Follows directly because the Hessian is negative semidefinite:

N T

d?(9) e 0'x T
) = — Z T pTeo T XiX; .
6 £ (14 ¢=07)2

—6Tx;

We know this because matrices of the form x;x are positive semidefinite and (1+e > > 0, and the sum

of positive semidefinite matrices scaled by non-negative numbers is also positive semidefinite.

efﬂTxi)

O

Theorem 6.1 ensures that gradient descent will find (or get arbitrarily close to) the mazimum likelihood
estimator (MLE):

0 = argmax P(y|X,9).
eeRD+l

Once we have found 6, we can determine whether y = 0 or y = 1 for a new sample with features x, by simply
using (6.7), with 6 instead of 6.

6.6 Asymptotic Confidence

At this point we are capable of learning the best parameter 6 (which in turn determines the best function
of the form in (6.7)) that explains our training data, and use it to predict new y’s. The next question we
should be asking is: how much can I trust my prediction? Perhaps we do not care too much about this
for our hypothetical Titanic survival example. But what about other cases where decisions are crucial, for
example in medical applications. Or going back to our edible vs. poisonous mushroom example, would you
eat a mushroom that your logistic regression algorithm classifies as edible?

In linear regression we addressed this question using confidence intervals: we showed that our estimate
6 = X'X)" Xy (6.10)

was distributed A'(6%,0%(X'X)~1), and computed the likelihood that it was too far from the true 8%, which
in turn determined the reliability of our prediction ¥ = x"6.

Unfortunately, since maximizing the likelihood in logistic regression involves a numeric algorithm (like gra-
dient ascent), we don’t have a closed-form expression for  like (6.10) in linear regression. Fortunately, since
6 is an MLE, we can use the next theorem, stating that estimators of this type follow an asymptotic Normal
distribution as the sample size N grows.
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Definition 6.1 (Convergence in Distribution). Let Zy, Z be random variables with cumulative density
functions Fy and F. We say Zn converges in distribution to Z, denoted as Zy i> Z, if

Nlim Fn(z) = F(2) for all z in which F' is continuous.
— 00

Intuitively, Zn %, Z means that as N grows, the distribution of Zy is approximately the same as the
distribution of Z. Notice that our estimator  is a random vector that depends on the number of samples N.
The next theorem shows that as N grows, 0 (playing the role of Zy) converges in distribution to a Normal
random variable.

Theorem 6.2 (Asymptotic distribution of the MLE). Let y1,...,yn be independent random variables,
where y; ~ P(y|z;,0), with 6* € RP*1. Define

N
£00) = Zlog P(yi|x;, 0), and 6 .= agégkrgffc £(0).
i=1

200
Suppose 102 ) exists. Then as N — oo,

6 — N(0.15)),
where Ig- is the N-sample Fisher-information matriz, defined as:

d2¢(0) ‘
d6? le=e+ |’

Ig« = —]E{

Proof. The proof follows as a consequence of the central limit theorem, which says that if zq,..., 2y are
i.i.d. with mean g and variance o2, then @ (Zil 2 — u) is asymptotically distributed A(0,1). For a
detailed proof see Theorem 10.1.12 in Statistical Inference by George Casella and Roger L. Berger, second
edition, or Theorem 4.17 in Mathematical Statistics by Jun Shao, second edition. O

Using Theorem 6.2 we can approximate the distribution of 6. All we need to do is compute the Fisher-
information matrix, given by

da26(0) N e
o == —E ‘ N ) P
0 |: 462 9_9*} [Z (1 +670Txi)2xxl

i=1

N eiB*Txi
T
= —_——XX; .
0—0* Z (1_~_679*Tx;)2 1

i=1

At this point we can derive confidence intervals for the log-odds, similar to what we did in linear regression.
To see this, recall that the the log-odds are defined as

w* = log (m) = 0"x.
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By the invariance property of the MLE, we know that the MLE of w* is given by

o = 0'x,
where 6 is the MLE of 8*. By Theorem 6.2, we know that 6 LN N(G*,Ig}), which further implies
LN Ve (O*Tx,xTIg}x), or equivalently
LN N(w*,XTI;}x).
It follows that the asymptotic probability that @ is T-away from the true w* is
Pl —w*| >7) = 2 Dy ( T ‘ o,xTI;}x) :

where ®pr( - | p,v) is the tail function of the N (u,v) distribution:

Conversely, given a desired significance level « (typically set to 0.05), we can find a threshold
T o= &y ( /s ‘ O,XTIgfx)

such that P(|0 —w*| <7)=1-—«:

Equivalently, we conclude that with probability 1 — a (typically set to 0.95), the true (but unknown) w* is

in the confidence interval (& — 7,0 + 7).

6.7 Learning Significant Features

Another cool thing about Theorem 6.2 is that now that we know the asymptotic distribution of é, we can
also identify its significant features using a similar hypothesis test as in linear regression:

Hy: éj ~ N(QJ*, UjQ), Hj* =0 = j*h feature is irrelevant,

Hy: 6 ~ N(0F,v7), 05 #0 = j*® feature is significant.
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where Vj2 denotes the (j,j)'" entry in the covariance matrix Ig}. Recall that the main idea to address such
hypothesis test problem is to use a likelihood ratio test (LRT):

P(6;]6* #0) m
PGIGF 200 & (6.11)
IP’(91|9J* = 0) Hy

Here IP’(H}-W; # 0) denotes the likelihood of éj under H;, and similarly ]P’(éjwj* = 0) denotes the likelihood of
éj under Hy. In words, (6.11) decides H; if the likelihood ratio A(éj) = %ﬁigi
the likelihood under H; is larger than under Hy), and decides Hy otherwise. ﬁowever, since we do not know
the specific value of ¢} under Hi, we cannot compute (6.11) directly. Instead we have to use a generalized
likelihood ratio test (GLRT):

is larger than 1 (meaning

P(é: o>
Bt (65165)

_——— > T, 6.12
P(6;]6: =0) (6.12)

where 7 can be chosen to bound the probability of a certain type of error (e.g., deciding Hy when Hj is true,
often called Type 1 error) or guarantee the probability of a correct decision (e.g., correctly rejecting Hy).

The main idea behind (6.12) is to substitute 6 with its MLE, which we already know from before to be 0;.
Then our test becomes:

Taking log and with minor algebra manipulations we can further simplify our test into:

H\2 m
(—J> 2 2logr.
Vj Hy

Under H, 6; ~ N0, v?), 50 0/u; ~ N'(0,1), which implies (6/1;)? ~ x%. Given a desired significance level o
(probability of deciding H; given that Hy is true, typically set to 0.05), we can select T as:

-1
7 = e2% (a),

M

where @, is the tail function of the x? distribution:
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With this, our test further simplifies into:

(@)2 2 oY) (6.13)

In words, (6.13) says: decide Hy if 9? > Vf@; 1(a), and decide Hy otherwise, which matches our intuition,
essentially saying: if \9}| is large enough, conclude that 67 # 0, and that the it feature is significant;

conversely, if \9}| is too small, conclude that 67 = 0, and that the jth feature is irrelevant:

Finally, given an instance of the test statistic (/y;)?, its p-value (indicating the probability of observing a
larger test statistic under Hy) is

p-value
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6.8 Logistic Regression Recipe

To summarize, here is how we would use logistic regression in a typical scenario:

e Collect labels y € {0,1}N and features X € RN*D from N samples.
e Find the MLE 6 = arg maxgern+1 P(y|X,0) using gradient descent or your favorite method.

e Given a new sample x, decide:

: 1 1
z} _ 1 lf 714_679»1—)‘ > bR
0 otherwise.

e Given a significance level « (typically set to 0.05), we know that with probability 1 — «, the true
log-odds w* lie in the confidence interval (0 —7,&+7), where & = 07x, and 7 = @X/l( afo } 0, xTIglx),
and @pr( - | p,v) is the tail function of the N (i, v) distribution. Notice that since 8 is unknown (and
hence so is I, ), here we are substituting Ig} with Igl, which by the invariance property is also an
MLE.

e With p-value ®,(%/1?), conclude that the j*! feature is significant if éf > 20 (), and decide it is
irrelevant, otherwise; here 12 is the (j, j)™ entry in cov(d) = Iefl. Here @, is the tail function of the x?
distribution.
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