Daniel Pimentel-Alarcón
papers & code
talks
teaching
students
research
hobbies
Spring 2025:
BMI 826
AI for Sciences & Humanities
Spring 2024:
CS 760
Machine Learning
Spring 2020:
BMI/CS 567
Med Im An
Spring 2019:
CS 6780
Fund Data Sci
Fall 2018:
CS 4850
Intro Mach Learn
Spring 2018:
CS 6980
Intro Data Sci
Fall 2017:
CS 8850
ML Theory
Lectures:
Monday, Wednesday 10:00am-11:45am, Classroom South 306.
Office Hours:
Monday 8:45am-9:45am, Wednesday 11:45am-12:45pm.
TA:
Xiulong Yang, xyang22@student.gsu.edu
Syllabus
   
Scribing Calendar
Lecture Notes
lecture_template.tex
   
example_figure.svg
   
example_figure.eps
Lecture 1: Introduction to Data Science
Lecture 2: Review of Linear Algebra
Lecture 3: Review of Probability Theory
Lecture 4: Linear Regression
Lecture 6: Logistic Regression
Lecture 7: Gradient Descent
Lecture 8: K-means
Lecture 9: Information Theory
Lecture 10: Midterm Review
Lecture 11: Midterm Solutions
Lecture 12: Entropy
Lecture 13: Decision Trees
Lecture 14: Random Trees Example
Lecture 15: Expectation
Lecture 16: Estimation
Lecture 17: Covariance
Lecture 18: Covariance Matrix
Mini-Projects
Mini-Project 1: Simulations & Visualization
Mini-Project 2: Logistic Regression & Disaster Survival
titanic_data.csv
Mini-Project 3: K-means & Breast Cancer
breast_data.csv
breast_truth.csv
mu_init.mat
Mini-Project 4: Data Science & Information Theory
Mini-Project 5: Correlation & Brain fMRI
thumb_data.mat
Mini-Project 6: PCA & Face Clustering
Yale_data.mat
© Daniel Pimentel-Alarcón